Skip to main content
Log in

Binding of biguanides to β-lactoglobulin: molecular-docking and molecular dynamics simulation studies

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Biguanides are a class of drugs derived from biguanide and they are the most widely used drugs for diabetes mellitus or pre-diabetes treatment. An investigation of their interaction and a transport protein such as β-lactoglobulin (BLG) at atomic level could be a valuable factor in controlling their transport to biological sites. Molecular-docking and molecular dynamics simulation methods were used to study the interaction of metformin, phenformin and buformin as biguanides and BLG as transport protein. The molecular-docking results revealed that these biguanides bind to BLG and that the BLG affinity for binding the biguanides decreases in the following order: phenformin — buformin — metformin. The docking results also show the hydrophobic interactions to have a significant role in the BLG-biguanides complex stability. Analysis of molecular dynamic simulation trajectories shows that the root mean square deviation of various systems attained equilibrium and fluctuated around the mean value at various times. The time evolution of the radius of gyration and the total solvent-accessible surface of the protein showed that BLG and BLG-biguanide complexes became stable at approximately 2500 ps and that there was not any conformational change in the BLG-biguanide complexes. In addition, the profiles of atomic fluctuations show the rigidity of the ligand-binding site during the simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandrov, V. A., Anisimov, V. N., Belous, N. M., Vasilyeva, I. A., & Mazon, V. B. (1980). The inhibition of the transplacental blastomogenic effect of nitrosomethylurea by postnatal administration of buformin to rats. Carcinogenesis, 1, 975–978. DOI: 10.1093/carcin/1.12.975.

    Article  CAS  Google Scholar 

  • Anisimov, V. N., Ostroumova, M. N., & Dilman, V. M. (1980). Inhibition of the carcinogenic effect of 7,12-dimethylbenz(a) anthracene in female rats by buformin, phenytoin, pineal polypeptide extract and L-dopa. Bulletin of Experimental Biology and Medicine, 89, 819–822. DOI: 10.1007/bf00836263.

    Article  Google Scholar 

  • Anisimov, V. N. (2003). Insulin/IGF-1 signaling pathway driving aging and cancer as a target for pharmacological intervention. Experimental Gerontology, 38, 1041–1049. DOI: 10.1016/s0531-5565(03)00169-4.

    Article  CAS  Google Scholar 

  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81, 3684. DOI: 10.1063/1.448118.

    Article  CAS  Google Scholar 

  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communication, 91, 43–56. DOI: 10.1016/0010-4655(95)00042-e.

    Article  CAS  Google Scholar 

  • Brownlow, S., Cabral, J. H. M., Cooper, R., Flower, D. R., Yewdall, S. J., Polikarpov, I., North, A. C. T., & Sawyer, L. (1997). Bovine β-lactoglobulin at 1.8 Å resolution — still an enigmatic lipocalin. Structure, 5, 481–495. DOI: 10.1016/s0969-2126(97)00205-0.

    Article  CAS  Google Scholar 

  • Caraci, F., Chisari, M., Frasca, G., Chiechio, S., Salomone, S., Pinto, A., Sortino, M. A., & Bianchi, A. (2003). Effects of phenformin on the proliferation of human tumor cell lines. Life Sciences, 74, 643–650. DOI: 10.1016/j.lfs.2003.07.015.

    Article  CAS  Google Scholar 

  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. Journal of Chemical Physics, 98, 10089. DOI: 10.1063/1.464397.

    Article  CAS  Google Scholar 

  • Dong, A., Matsuura, J., Allison, S. D., Chrisman, E., Manning, M. C., & Carpenter, J. F. (1996). Infrared and circular dichroism spectroscopic characterization of structural differences between β-lactoglobulin A and B. Biochemistry, 35, 1450–1457. DOI: 10.1021/bi9518104.

    Article  CAS  Google Scholar 

  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. Journal of Chemical Physics, 103, 8577. DOI: 10.1063/1.470117.

    Article  CAS  Google Scholar 

  • Flower, D. R., North, A. C. T., & Sansom, C. E. (2000). The lipocalin protein family: structural and sequence overview. Biochimica et Biophysica Acta (BBA) — Protein Structure and Molecular Enzymology, 1482, 9–24. DOI: 10.1016/s0167-4838(00)00148-5.

    Article  CAS  Google Scholar 

  • Jiralerspong, S., Palla, S. L., Giordano, S. H., Meric-Bernstam, F., Liedtke, C., Barnett, C. M., Hsu, L., Hung, M. C., Hortobagyi, G. N., & Gonzalez-Angulo, A. M. (2009). Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. Journal of Clinical Oncology, 27, 3297–3302. DOI: 10.1200/jco.2009.19.6410.

    Article  CAS  Google Scholar 

  • Kontopidis, G., Holt, C., & Sawyer, L. (2002). The ligandbinding site of bovine β-lactoglobulin: Evidence for a function? Journal of Molecular Biology, 318, 1043–1055. DOI: 10.1016/s0022-2836(02)00017-7.

    Article  CAS  Google Scholar 

  • Kontopidis, G., Holt, C., & Sawyer, L. (2004). β-Lactoglobulin: Binding properties, structure, and function. Journal of Dairy Science, 87, 785–796. DOI: 10.3168/jds.s0022-0302(04)73222-1.

    Article  CAS  Google Scholar 

  • Lindah, E., Hess, B., & van der Spoel, D. (2001). GROMACS 3.0: a package for molecular simulation and trajectory analysis. Journal of Molecular Modelling, 7, 306–317. DOI: 10.1007/s008940100045.

    Google Scholar 

  • Mehraban, M. H., Yousefi, R., Taheri-Kafrani, A., Panahi, F., & Khalafi-Nezhad, A. (2013). Binding study of novel antidiabetic pyrimidine fused heterocycles to β-lactoglobulin as a carrier protein. Colloids and Surfaces B: Biointerfaces, 112, 374–379. DOI: 10.1016/j.colsurfb.2013.08.013.

    Article  CAS  Google Scholar 

  • Nikolic, K., Filipic, S., & Agbaba, D. (2008). QSAR study of imidazoline antihypertensive drugs. Bioorganic & Medicinal Chemistry, 16, 7134–7140. DOI: 10.1016/j.bmc.2008.06.051.

    Article  CAS  Google Scholar 

  • Pullman, B. (1981). Intermolecular forces. Dordrecht, The Netherlands: Reidel.

    Book  Google Scholar 

  • Renard, D. (1994). Etude de l’agrégation et de la gélification des protéines globulaires: application `a la bétalactoglobuline. Ph.D. thesis, University of Nantes, Nantes, France. (in French)

    Google Scholar 

  • Roufik, S., Gauthier, S. F., Leng, X. J., & Turgeon, S. L. (2006). Thermodynamics of binding interactions between bovine β-lactoglobulin A and the antihypertensive peptide β-Lg f142-148. Biomacromolecules, 7, 419–426. DOI: 10.1021/bm050229c.

    Article  CAS  Google Scholar 

  • Saito, S., Furuno, A., Sakurai, J., Sakamoto, A., Park, H. R., Shin-ya, K., Tsuruo, T., & Tomida, A. (2009). Chemical genomics identifies the unfolded protein response as a target for selective cancer cell killing during glucose deprivation. Cancer Research, 69, 4225–4234. DOI: 10.1158/0008-5472.can-08-2689.

    Article  CAS  Google Scholar 

  • Sawyer, L., & Kontopidis, G. (2000). The core lipocalin, bovine β-lactoglobulin. Biochimica et Biophysica Acta (BBA) — Protein Structure and Molecular Enzymology, 1482, 136–148. DOI: 10.1016/s0167-4838(00)00160-6.

    Article  CAS  Google Scholar 

  • Schlehuber, S., & Skerra, A. (2005). Lipocalins in drug discovery: From natural ligand-binding proteins to ‘anticalins’. Drug Discovery Today, 10, 23–33. DOI: 10.1016/s1359-6446(04)03294-5.

    Article  CAS  Google Scholar 

  • Schleyer, P. V. R., Allinger, N. L., Clark, T., Gasteiger, J., Kollman, P. A., Schaefer, H. F., III, & Schreiner, P. R. (1998). The encyclopedia of computational chemistry. Chichester, UK: Wiley.

    Google Scholar 

  • Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S. J., Windus, T. L., Dupuis, M., & Montgomery, J. A., Jr. (1993). General atomic and molecular electronic structure system. Journal of Computational Chemistry, 14, 1347–1363. DOI: 10.1002/jcc.540141112.

    Article  CAS  Google Scholar 

  • Schüttelkopf, A. W., & van Aalten, D. M. F. (2004). PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica D, 60, 1355–1363. DOI: 10.1107/s0907444904011679.

    Article  Google Scholar 

  • Thompson, M. A. (2004). Molecular docking using ArgusLab: an efficient shape-based search algorithm and the AScore scoring function. In Proceedings of the Fall ACS Meeting, August 22–26, 2004. Philadelphia, PA, USA: American Chemical Society.

    Google Scholar 

  • van Gunsteren, W. F., Billeter, S. R., Eising, A. A., Hünenberger, P. H., Krüger, P. K. H. C., Mark, A. E., Scott, W. R. P., & Tironi, I. G. (1996). Biomolecular simulation: The GROMOS96 manual and user guide. Zürich, Switzerland: Vdf Hochschulverlag AG.

    Google Scholar 

  • Wu, S. Y., Pérez, M. D., Puyol, P., & Sawyer, L. (1999). β-Lactoglobulin binds palmitate within its central cavity. Journal of Biological Chemistry, 274, 170–174. DOI: 10.1074/jbc.274.1.170.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Sahihi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahihi, M., Ghayeb, Y. Binding of biguanides to β-lactoglobulin: molecular-docking and molecular dynamics simulation studies. Chem. Pap. 68, 1601–1607 (2014). https://doi.org/10.2478/s11696-014-0598-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0598-7

Keywords

Navigation