Skip to main content

Advertisement

Log in

The use of impregnated perlite as a heterogeneous catalyst for biodiesel production from marula oil

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this study, biodiesel was produced from marula (Sclerocarya birrea) oil using impregnated perlite with potassium hydroxide (KOH) as a heterogeneous catalyst. The effect of experimental variables such as temperature (°C), reaction time (h), methanol to oil ratio (mass %), and catalyst to oil ratio (mass %) on the transesterification process were investigated. Using a central composite design (CCD), a mathematical model was developed to correlate the experimental variables with the percentage yield of biodiesel. The model showed that optimum conditions for biodiesel production were as follows: catalyst to oil ratio of 4.7 mass %, temperature of 70.4°C, methanol to oil ratio of 29.9 mass %, and reaction time of 3.6 h. The yield of 91.4 mass % of biodiesel was obtained. It was also possible to recycle and reuse the modified perlite up to three times without any significant change in its catalytic activity. The X-ray diffraction (XRD) and the Brunauer-Emmett-Teller (BET) surface area showed no modifications in the perlite structure. The results show that the important fuel properties of marula biodiesel meet the American Society for Testing and Materials (ASTM) biodiesel standard properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcantara, A., Amores, J., Canoira, L., Fidalgo, E., Franco, M. J., & Navarro, A. (2000). Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow. Biomass & Bioenergy, 18, 515–527..DOI: 10.1016/s0961-9534(00)00014-3.

    Article  CAS  Google Scholar 

  • Alkan, M., & Doğan, M. (2001). Adsorption of copper (II) onto perlite. Journal of Colloid and Interface Science, 243, 280–291. DOI: 10.1006/jcis.2001.7796.

    Article  CAS  Google Scholar 

  • American Society for Testing and Materials (2002). US standard: Standard specification for biodiesel buel (B100) blend stock for distillate fuels. ASTM D6751-02. West Conshohocken, PA, USA. DOI: 10.1520/D6751-02.

    Google Scholar 

  • American Society for Testing and Materials (2011). US standard: Standard test method for cloud point of petroleum products. ASTM D2500. West Conshohocken, PA, USA. DOI: 10.1520/D2500-11.

    Google Scholar 

  • American Society for Testing and Materials (2012a). US standard: Standard test method for kinematic viscosity of transparent and opaque liquids (and calculation of dynamic viscosity). ASTM D445. West Conshohocken, PA, USA. DOI: 10.1520/D0445-12.

    Google Scholar 

  • American Society for Testing and Materials (2012b). US standard: Standard test method for density, relative density, or API gravity of crude petroleum and liquid petroleum products by hydrometer method. ASTM 1298. West Conshohocken, PA, USA. DOI: 10.1520/D1298-12B.

    Google Scholar 

  • American Society for Testing and Materials (2013). US standard: Standard test methods for flash point by Pensky-Martens closed cup tester. ASTM D93. West Conshohocken, PA, USA. DOI: 10.1520/D0093.

    Google Scholar 

  • Gole, V. L., & Gogate, P. R. (2012). A review on intensification of synthesis of biodiesel from sustainable feed stock using sonochemical reactors. Chemical Engineering and Processing: Process Intensification, 53, 1–9. DOI: 10.1016/j.cep.2011.12.008.

    Article  CAS  Google Scholar 

  • Karatepe, N., Ersoy-Meriçboyu, A., & Küçükbayrak, S. (1998). Preparation of fly ash-Ca(OH)2 sorbents by pressure hydration for SO2 removal. Energy Sources, 20, 945–953. DOI: 10.1080/00908319808970109.

    Article  CAS  Google Scholar 

  • Koumanova, B., & Peeva-Antova, P. (2002). Adsorption of pchlorophenol from aqueous solutions on bentonite and perlite. Journal of Hazardous Materials, 90, 229–234. DOI: 10.1016/s0304-3894(01)00365-x.

    Article  CAS  Google Scholar 

  • Kusuma, R. I., Hadionoto, J. P., Ayucitra, A., Soetaredjo, F. E., & Ismadji, S. (2013). Natural zeolite from Pacitan Indonesia, as catalyst support for transesterification of palm oil. Applied Clay Science, 74, 121–126. DOI: 10.1016/j.clay.2012.04.021.

    Article  CAS  Google Scholar 

  • Lee, K. T., Mothar, A. M., Zainudin, N. F., Bhatia, S., & Mohamed, A. R. (2005). Optimum conditions for the preparation of flue gas desulfurization sorbent from rice husk ash. Fuel, 84, 143–151. DOI: 10.1016/j.fuel.2004.08.018

    Article  CAS  Google Scholar 

  • Leung, D. Y. C., & Guo, Y. (2006). Transesterification of neat and used frying oil: Optimization for biodiesel production. Fuel Processing Technology, 87, 883–890. DOI: 10.1016/j.fuproc.2006.06.003.

    Article  CAS  Google Scholar 

  • Lin, L., Ying, D., Chaitep, S., & Vittayapadung, S. (2009). Biodiesel production from crude rice bran oil and properties as fuel. Applied Energy, 86, 681–688. DOI: 10.1016/j. apenergy.2008.06.002.

    Article  CAS  Google Scholar 

  • Lu, P. M., Yuan, Z. H., Li, L. H., Wang, Z. M., & Luo, W. (2010). Biodiesel from different oil using fixed-bed and plug-flow reactors. Renewable Energy, 35, 283–287. DOI: 10.1016/j.renene.2009.07.011.

    Article  CAS  Google Scholar 

  • Montgomery, D. C. (2001). Design and analysis of experiments (5th ed.). New York, NY, USA: Wiley.

    Google Scholar 

  • Rutto, H. L., & Enweremadu, C. C. (2011). Optimization of production variables of biodiesel from Manketti using response surface methodology. International Journal of Green Energy, 8, 768–779. DOI: 10.1080/15435075.2011.600375.

    Article  CAS  Google Scholar 

  • Singh Chouhan, A. P., & Sarma, A. K. (2011). Modern heterogeneous catalysts for biodiesel production: A comprehensive review. Renewable and Sustainable Energy Reviews, 15, 4378–4399. DOI: 10.1016/j.rser.2011.07.112.

    Article  Google Scholar 

  • Soetaredjo, F. E., Ayucitra, A., Ismadji, S., & Maukar, A. L. (2011). KOH/bentonite catalysts for transesterification of palm oil to biodiesel. Applied Clay Science, 53, 341–346. DOI: 10.1016/j.clay.2010.12.018.

    Article  CAS  Google Scholar 

  • Sulaiman, S., Abdul-Aziz, A. R., & Aroua, M. K. (2013). Optimization and modeling of extraction of solid coconut waste oil. Journal of Food Engineering, 114, 228–234. DOI: 10.1016/j.jfoodeng.2012.08.025.

    Article  CAS  Google Scholar 

  • Tekin, N., Kadıncı, E., Demirbaş, Ö., Alkan, M., Kara, A., & Doğgan, M. (2006). Surface properties of poly(vinylimidazole)-adsorbed expanded perlite. Microporous and Mesoporous Materials, 93, 125–133, DOI: 10.1016/j.micromeso.2006.02.009.

    Article  CAS  Google Scholar 

  • Tsai, W. T., Lai, C. W., & Hsien, K. J. (2006). Characterization and adsorption properties of diatomaceous earth modified by hydrofluoric acid etching. Journal of Colloid and Interface Science, 297, 749–754. DOI: 10.1016/j.jcis.2005.10.058.

    Article  CAS  Google Scholar 

  • Uosukainen, E., Läms, M. (1999). Optimization of enzymatic transesterification of rapeseed oil ester using response surface and principal component methodology. Enzyme and Microbial Technology, 25, 236–243. DOI: 10.1016/s0141-0229(99)00034-4.

    Article  CAS  Google Scholar 

  • Wang, Z. M., Lee, J. S., Park, J. Y., Wu, C. Z., & Yuan, Z. H. (2007). Novel biodiesel production technology from soybean soapstock. Korean Journal of Chemical Engineering, 24, 1027–1030. DOI: 10.1007/s11814-007-0115-6.

    Article  CAS  Google Scholar 

  • Xie, W. L., & Zhao, L. L. (2013). Production of biodiesel by transesterification of soybean oil using calcium supported tin oxides as heterogeneous catalysts. Energy Conversion and Management, 76, 55–62. DOI: 10.1016/j.enconman.2013.07.027.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilary Rutto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modiba, E., Osifo, P. & Rutto, H. The use of impregnated perlite as a heterogeneous catalyst for biodiesel production from marula oil. Chem. Pap. 68, 1341–1349 (2014). https://doi.org/10.2478/s11696-014-0583-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0583-1

Keywords

Navigation