Skip to main content

Efficient one-pot synthesis of 2-hydroxyethyl per-O-acetyl glycosides

Abstract

A class of stereo-isomerically-pure alkanediol monoglycosides, 2-hydroxyethyl per-O-acetyl pyranosides (IIIa-IIIf), was conveniently prepared by a one-pot reaction of per-O-acetylated pyranoses (Ia-If) and 2-(tert-butyldimethylsilyloxy)ethanol (II) with catalysis by BF3·OEt2. The α-(IIIa) or β-linked glycosides (IIIb-IIIf) with 1,2-trans-configuration were obtained from glycosyl donors with participation of the neighbouring 2-O-acetyl group. BF3·OEt2, along with hydrogen fluoride released from BF3·OEt2 under the experimental conditions used, facilitates the subsequent de-protection of siloxane to successfully afford 2-hydroxyethyl per-O-acetyl-pyranosides.

This is a preview of subscription content, access via your institution.

References

  1. Baldwin, A. D., & Kiick, K. L. (2010). Polysaccharide-modified synthetic polymeric biomaterials. Peptide Science, 94, 128–140. DOI: 10.1002/bip.21334.

    CAS  Article  Google Scholar 

  2. Camponovo, J., Hadad, C., Ruiz, J., Cloutet, E., Gatard, S., Muzart, J., Bouquillon, S., & Astruc, D. (2009). “Click” glycodendrimers containing 27, 81, and 243 modified xylopyranoside termini. Journal of Organic Chemistry, 74, 5071–5074. DOI: 10.1021/jo900554b.

    CAS  Article  Google Scholar 

  3. Chérigo, L., Pereda-Miranda, R., Fragoso-Serrano, M., Jacobo-Herrera, N., Kaatz, G.W., & Gibbons, S. (2008). Inhibitors of bacterial multidrug efflux pumps from the resin glycosides of Ipomoea murucoides. Journal of Natural Products, 71, 1037–1045. DOI: 10.1021/np800148w.

    Article  Google Scholar 

  4. Dahmén, J., Frejd, T., Magnusson, G., & Noori, G. (1983). Boron trifluoride etherate-induced glycosidation: formation of alkyl glycosides and thioglycosides of 2-deoxy-2-phthalimidoglycopyranoses. Carbohydrate Research, 114, 328–330. DOI: 10.1016/0008-6215(83)88202-0.

    Article  Google Scholar 

  5. Enes, R. F., Tomé, A. C., Cavaleiro, J. A. S., El-Agamey, A., & McGarvey, D. J. (2005). Synthesis and solvent dependence of the photophysical properties of [60]fullerene-sugar conjugates. Tetrahedron, 61, 11873–11881. DOI: 10.1016/j.tet.2005.09.078.

    CAS  Article  Google Scholar 

  6. Ferrier, R. J., & Hatton, L. R. (1968). Studies with radioactive sugars: Part I. Aspects of the alcoholysis of d-xylose and d-glucose; the role of the acyclic acetals. Carbohydrate Research, 6, 75–86. DOI: 10.1016/s0008-6215(00)80060-9.

    CAS  Article  Google Scholar 

  7. Hanessian, S., & Banoub, J. (1977). Chemistry of the glycosidic linkage. O-glycosylations catalyzed by stannic chloride, in the d-ribofuranose and d-glucopyranose series. Carbohydrate Research, 57, 261–267. DOI: 10.1016/s0008-6215(00)83314-5.

    Article  Google Scholar 

  8. Hayes, W., Osborn, H. M. I., Osborne, S. D., Rastall, R. A., & Romagnoli, B. (2003). One-pot synthesis of multivalent arrays of mannose mono- and disaccharides. Tetrahedron, 59, 7983–7996. DOI: 10.1016/j.tet.2003.08.011.

    CAS  Article  Google Scholar 

  9. Joshi, V. Y., & Sawant, M. R. (2007). Novel stereo controlled glycosylation of 1,2,3,4,6-penta-O-acetyl-β-d-glucopyranoside using MgO-ZrO2 as an environmentally benign catalyst. Catalysis Communications, 8, 1910–1916. DOI: 10.1016/j.catcom.2007.03.010.

    CAS  Article  Google Scholar 

  10. Katajisto, J., Virta, P., & Lönnberg, H. (2004). Solid-phase synthesis of multiantennary oligonucleotide glycoconjugates utilizing on-support oximation. Bioconjugate Chemistry, 15, 890–896. DOI: 10.1021/bc049955n.

    CAS  Article  Google Scholar 

  11. Katsuraya, K., Ikushima, N., Takahashi, N., Shoji, T., Nakashima, H., Yamamoto, N., Yoshida, T., & Uryu, T. (1994). Synthesis of sulfated alkyl malto- and laminara-oligosaccharides with potent inhibitory effects on AIDS virus infection. Carbohydrate Research, 260, 51–61. DOI: 10.1016/0008-6215(94)80021-9.

    CAS  Article  Google Scholar 

  12. Koto, S., Morishima, N., Kawahara, R., Ishikawa, K., & Zen, S. O. (1982). A study of the rapid anomerization of poly-O-benzyl-β-d-glucopyranosides with titanium tetrachloride. Bulletin of the Chemical Sociaty of Japan, 55, 1092–1096. DOI: 10.1246/bcsj.55.1092.

    CAS  Article  Google Scholar 

  13. Lucas, R., Gómez-Pinto, I., Aviñó, A., Reina, J. J., Eritja, R., González, C., & Morales, J. C. (2011). Highly polar carbohydrates stack onto DNA duplexes via CH/π interactions. Journal of the American Chemical Society, 133, 1909–1916. DOI: 10.1021/ja108962j.

    CAS  Article  Google Scholar 

  14. Mukthavaram, R., Marepally, S., Venkata, M. Y., Vegi, G. N., Sistla, R., & Chaudhuri, A. (2009). Cationic glycolipids with cyclic and open galactose head groups for the selective targeting of genes to mouse liver. Biomaterials, 30, 2369–2384. DOI: 10.1016/j.biomaterials.2008.12.074.

    CAS  Article  Google Scholar 

  15. Nicolaou, K. C., & Mitchell, H. J. (2001). Adventures in carbohydrate chemistry: new synthetic technologies, chemical synthesis, molecular design, and chemical biology. Angewandte Chemie International Edition, 40, 1576–1624. DOI: 10.1002/1521-3773(20010504)40:9〈1576::aid-anie15760〉3.0.co;2-g.

    CAS  Article  Google Scholar 

  16. Paulsen, H., & Paal, M. (1984). Lewissäure-katalysierte Synthesen von Di- und Trisaccharid-sequenzen der O- und N-Glycoproteine. Anwendung von Trimethylsilyltrifluoromethanesulfonat. Carbohydrate Research, 135, 53–69. DOI: 10.1016/0008-6215(84)85005-3. (in German)

    CAS  Article  Google Scholar 

  17. Pereda-Miranda, R., & Bah, M. (2003). Biodynamic constituents in the Mexican morning glories: Purgative remedies transcending boundaries. Current Topics in Medicinal Chemistry, 3, 111–131. DOI: 10.2174/1568026033392534.

    CAS  Article  Google Scholar 

  18. Petrig, J., Schibli, R., Dumas, C., Alberto, R., & Schubiger, P. A. (2001). Derivatization of glucose and 2-deoxyglucose for transition metal complexation: Substitution reactions with organometallic 99mTc and Re precursors and fundamental NMR investigations. Chemistry — A European Journal, 7, 1868–1873. DOI: 10.1002/1521-3765(20010504)7:9〈1868::aid-chem1868〉3.0.co;2-h.

    CAS  Article  Google Scholar 

  19. Sorg, B. L., Hull, W. E., Kliem, H. C., Mier, W., & Wiessler, M. (2005). Synthesis and NMR characterization of hydroxyurea and mesylglycol glycoconjugates as drug candidates for targeted cancer chemotherapy. Carbohydrate Research, 340, 181–189. DOI: 10.1016/j.carres.2004.11.024.

    CAS  Article  Google Scholar 

  20. Thoma, G., Magnani, J. L., Patton, J. T., Ernst, B., & Jahnke, W. (2001). Preorganization of the bioactive conformation of sialyl Lewisx analogues correlates with their affinity to E-selectin. Angewandte Chemie International Edition, 40, 1941–1945. DOI: 10.1002/1521-3773(20010518)40:10〈1941:: aid-anie1941〉3.0.co;2-t.

    CAS  Article  Google Scholar 

  21. Tsuzuki, M., & Tsuchiya, T. (1998). Synthesis of α,α-, α,β-, and β,β-(dimaltoside)s of ethane-1,2-diol, propane-1,3-diol, and butane-1,4-diol: A proposal for an initial adhesion mode. Carbohydrate Research, 311, 11–24. DOI: 10.1016/s0008-6215(98)00191-8.

    CAS  Article  Google Scholar 

  22. Wang, S. S., Liu, D., Zhang, X., Li, S. G., Sun, Y. X., Li, J., Zhou, Y. F., & Zhang, L. P. (2007). Study on glycosylated prodrugs of toxoflavins for antibody-directed enzyme tumor therapy. Carbohydrate Research, 342, 1254–1260. DOI: 10.1016/j.carres.2007.03.006.

    CAS  Article  Google Scholar 

  23. Woo, Y. H., Fernandes, R. P., & Proteau, P. J. (2006). Evaluation of fosmidomycin analogs as inhibitors of the Synechocystis sp. PCC6803 1-deoxy-d-xylulose 5-phosphate reductoisomerase. Bioorganic & Medicinal Chemistry, 14, 2375–2385. DOI: 10.1016/j.bmc.2005.11.012.

    CAS  Article  Google Scholar 

  24. Wulff, G., & Röhle, G. (1974). Results and problems of Oglycoside synthesis. Angewandte Chemie International Edition, 13, 157–170. DOI: 10.1002/anie.197401571.

    CAS  Article  Google Scholar 

  25. Yu, W. Y., Zhang, N., & Li, C. J. (2009). Saccharide modified pharmaceutical nanocarriers for targeted drug and gene delivery. Current Pharmaceutical Design, 15, 3826–3836. DOI: 10.2174/138161209789649547.

    CAS  Article  Google Scholar 

  26. Zhou, L., Yang, H. S., & Wang, P. F. (2011). Development of trityl-based photolabile hydroxyl protecting groups. Journal of Organic Chemistry, 76, 5873–5881. DOI: 10.1021/jo200692c.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ping-Gui Yi.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tao, HW., Wang, X., Yi, PG. et al. Efficient one-pot synthesis of 2-hydroxyethyl per-O-acetyl glycosides. Chem. Pap. 68, 1132–1136 (2014). https://doi.org/10.2478/s11696-014-0552-8

Download citation

Keywords

  • one-pot synthesis
  • alkanediol monoglycoside
  • glycosylation
  • neighbouring group participation