Advertisement

Chemical Papers

, Volume 68, Issue 7, pp 899–912 | Cite as

Scale-adaptive simulation of liquid mixing in an agitated vessel equipped with eccentric HE 3 impeller

  • Marek Dománski
  • Joanna KarczEmail author
  • Marcelina Bitenc
Original Paper

Abstract

The current study presents the results of a numerical simulation of hydrodynamics in an agitated vessel equipped with an eccentric HE 3 impeller. CFD (computational fluid dynamics) simulations were carried out using ANSYS 14.0 software. Time-dependent simulations of turbulent flow were carried out using the SAS-SST (scale adaptive simulation-shear stress transport) method coupled with the SM (sliding mesh) method. The results of the calculations are presented as contours of velocity in different cross-sections of the agitated vessel, as well as profiles of components of velocity vector and turbulence kinetic energy and its dissipation rate. The iso-surface of vorticity, which shows the region of possible vortex existence, is also presented. A numerically obtained data set of impeller power number was used to calculate the averaged impeller power number. This value was compared with the experimental data with good results. The relationship between impeller position and fluctuation of the impeller power number was also analysed.

Keywords

agitation eccentric impeller CFD HE 3 impeller scale adaptive simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez, M. M., Arratia, P. E., & Muzzio, F. J. (2002). Laminar mixing in eccentric stirred tank systems. The Canadian Journal of Chemical Engineering, 80, 546–557. DOI:  10.1002/cjce.5450800418.CrossRefGoogle Scholar
  2. Ascanio, G., Brito-Bazán, M., Brito-De La Fuente, E., Carreau, P. J., & Tanguy, P. A. (2002). Unconventional configuration studies to improve mixing times in stirred tanks. The Canadian Journal of Chemical Engineering, 80, 558–565. DOI:  10.1002/cjce.5450800419.CrossRefGoogle Scholar
  3. Bulnes-Abundis, D., Carrillo-Cocom, L. M., Aráiz-Hernández, D., García-Ulloa, A., Granados-Pastor, M., Sánchez-Arreola, P. B., Murugappan, G., & Alvarez, M. M. (2013). A simple eccentric stirred tank mini-bioreactor: Mixing characterization and mammalian cell culture experiments. Biotechnology and Bioengineering, 110, 1106–1118. DOI:  10.1002/bit.24780.CrossRefGoogle Scholar
  4. Cabaret, F., Fradette, L., & Tanguy, P. A. (2008). Effect of shaft eccentricity on the laminar mixing performance of a radial impeller. The Canadian Journal of Chemical Engineering, 86, 971–977. DOI:  10.1002/cjce.20103.CrossRefGoogle Scholar
  5. Celik, I. B., Ghia, U., Roache, P. J., Freitas, Ch. J., Coleman, H., & Raad, P. E. (2008). Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. Journal of Fluids Engineering, 130(7), 078001. DOI:  10.1115/1.2960953.CrossRefGoogle Scholar
  6. Sánchez Cervantes, M. I., Lacombe, J., Muzzio, F. J., & Álvarez, M. M. (2006). Novel bioreactor design for the culture of suspended mammalian cells. Part I: Mixing characterization. Chemical Engineering Science, 61, 8075–8084. DOI:  10.1016/j.ces.2006.09.035.CrossRefGoogle Scholar
  7. Cudak, M. (2004). Heat and momentum transfer in agitated vessel equipped with eccentric impeller. Ph.D. thesis, Technical University of Szczecin, Szczecin, Poland. (in Polish)Google Scholar
  8. Cudak, M., & Karcz, J. (2006). Momentum transfer in an agitated vessel with off-centred impellers. Chemical Papers, 60, 375–380. DOI:  10.2478/s11696-006-0068-y.CrossRefGoogle Scholar
  9. Cudak, M., & Karcz, J. (2008). Distribution of local heat transfer coefficient values in the wall region of an agitated vessel. Chemical Papers, 62, 92–99. DOI:  10.2478/s11696-007-0084-6.CrossRefGoogle Scholar
  10. Cudak, M., & Karcz, J. (2011). Local momentum transfer process in a wall region of an agitated vessel equipped with an eccentric impeller. Industrial & Engineering Chemistry Research, 50, 4140–4149. DOI:  10.1021/ie101977y.CrossRefGoogle Scholar
  11. Cudak, M., & Karcz, J. (2013). The effects of eccentricity of axial flow impeller on the momentum transfer proces in an agitated vessel. Experimental Thermal and Fluid Science, 44, 385–391. DOI:  10.1016/j.expthermflusci.2012.07.010.CrossRefGoogle Scholar
  12. Egorov, Y., Menter, F. R., Lechner, R., & Cokljat, D. (2010). The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 2: Application to complex flows. Flow, Turbulence and Combustion, 85, 139–165. DOI:  10.1007/s10494-010-9265-4.CrossRefGoogle Scholar
  13. Galletti, C., & Brunazzi, E. (2008). On the main flow features and instabilities in an unbaffled vessel agitated with an eccentrically located impeller. Chemical Engineering Science, 63, 4494–4505. DOI:  10.1016/j.ces.2008.06.007.CrossRefGoogle Scholar
  14. Galletti, C., Pintus, S., & Brunazzi, E. (2009). Effect of shaft eccentricity and impeller blade thickness on the vortices features in an unbaffled vessel. Chemical Engineering Research and Design, 87, 391–400. DOI:  10.1016/j.cherd.2008.11.013.CrossRefGoogle Scholar
  15. Hall, J. F., Barigou, M., Simmons, M. J. H., & Stitt, E. H. (2004). Mixing in unbaffled high-throughput experimentation reactors. Industrial & Engineering Chemistry Research, 43, 4149–4158. DOI:  10.1021/ie049872q.CrossRefGoogle Scholar
  16. Hall, J. F., Barigou, M., Simmons, M. J. H., & Stitt, E. H. (2005). Comparative study of different mixing strategies in small high throughput experimentation reactors. Chemical Engineering Science, 60, 2355–2368. DOI:  10.1016/j.ces.2004.10-045.CrossRefGoogle Scholar
  17. Karcz, J., & Cudak, M. (2002). Efficiency of the heat transfer process in a jacketed agitated vessel equipped with an eccentrically located impeller. Chemical Papers, 56, 382–386.Google Scholar
  18. Karcz, J., & Szoplik, J. (2004). An effect of the eccentric position of the propeller agitator on the mixing time. Chemical Papers, 58, 9–14.Google Scholar
  19. Karcz, J., Cudak, M., & Szoplik, J. (2005). Stirring of a liquid in a stirred tank with an eccentrically located impeller. Chemical Engineering Science, 60, 2369–2380. DOI:  10.1016/j.ces.2004.11.018.CrossRefGoogle Scholar
  20. Karcz, J., Domanski, M., Bitenc, M., & Kacperski, L. (2011). Numerical modeling of the hydrodynamics in an agitated vessel with an eccentrically located propeller. Przemysl Chemiczny, 90(9), 1651–1655.Google Scholar
  21. Karcz, J., Dománski, M., & Bitenc, M. (2012). Numerical modelling of the hydrodynamics in an agitated vessel with an eccentrically located HE 3 impeller. In Proceedings of the 14th European Conference on Mixing, September 10–13, 2012 (pp. 199–204). Warszawa, Poland.Google Scholar
  22. Menter, F. R., & Egorov, Y. (2010). The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: Theory and model description. Flow, Turbulence and Combustion, 85, 113–138. DOI:  10.1007/s10494-010-9264-5.CrossRefGoogle Scholar
  23. Montante, G., Bakker, A., Paglianti, A., & Magelli, F. (2006). Effect of the shaft eccentricity on the hydrodynamics of unbaffled stirred tanks. Chemical Engineering Science, 61, 2807–2814. DOI:  10.1016/j.ces.2005.09.021.CrossRefGoogle Scholar
  24. Rivera, C., Heniche, M., Ascanio, G., & Tanguy, P. (2004). A virtual finite element model for centered and eccentric mixer configurations. Computers & Chemical Engineering, 28, 2459–2468. DOI:  10.1016/j.compchemeng.2004.06.012.CrossRefGoogle Scholar
  25. Singh, H., Fletcher, D. F., & Nijdam, J. J. (2011). An assessment of different turbulence models for predicting flow in a baffled tank stirred with a Rushton turbine. Chemical Engineering Science, 66, 5976–5988. DOI:  10.1016/j.ces.2011.08.018.CrossRefGoogle Scholar
  26. Stręk, F. (1981). Agitation and agitated vessels (2 ed.). Warszawa, Poland: WNT. (in Polish)Google Scholar
  27. Szoplik, J., & Karcz, J. (2004). Studies of the mixing time within the transitional regime of the viscous liquid flow in a stirred tank with an eccentrically located propeller. Chemical and Process Engineering, 25, 1663–1669.Google Scholar
  28. Szoplik, J., & Karcz, J. (2005). An efficiency of the liquid homogenization in agitated vessels equipped with off-centred impeller. Chemical Papers, 59, 373–379.Google Scholar
  29. Szoplik, J., & Karcz, J. (2008). Mixing time of a non-Newtonian liquid in an unbaffled agitated vessel with an eccentric propeller. Chemical Papers, 62, 70–77. DOI:  10.2478/s11696-007-0081-9.CrossRefGoogle Scholar
  30. Woziwodzki, S., Broniarz-Press, L., & Ochowiak, M. (2010). Effect of eccentricity on transitional mixing in vessel equipped with turbine impellers. Chemical Engineering Research and Design, 88, 1607–1614. DOI:  10.1016/j.cherd.2010.04.007.CrossRefGoogle Scholar
  31. Woziwodzki, S., & Jędrzejczak, L. (2011). Effect of eccentricity on laminar mixing in vessel stirred by double turbine impellers. Chemical Engineering Research and Design, 89, 2268–2278. DOI:  10.1016/j.cherd.2011.04.004.CrossRefGoogle Scholar
  32. Xuereb, C., & Bertrand, J. (1996). 3-D hydrodynamics in a tank stirred by a double-propeller system and filled with a liquid having evolving rheological properties. Chemical Engineering Science, 51, 1725–1734. DOI:  10.1016/0009-2509(96)00031-0.CrossRefGoogle Scholar
  33. Yang, F. L., Zhou, S. J., & Wang, G. C. (2012). Detached eddy simulation of the liquid mixing in stirred tanks. Computers & Fluids, 64, 74–82. DOI:  10.1016/j.compfluid.2012.05.005.CrossRefGoogle Scholar
  34. Zhang, M. X., Hu, Y. Y., Wang, W. T., Shao, T., & Cheng, Y. (2013). Intensification of viscous fluid mixing in eccentric stirred tank systems. Chemical Engineering and Processing: Process Intensification, 66, 36–43. DOI:  10.1016/j.cep.2013.01.006.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2014

Authors and Affiliations

  • Marek Dománski
    • 1
  • Joanna Karcz
    • 1
    Email author
  • Marcelina Bitenc
    • 1
  1. 1.Department of Chemical EngineeringWest Pomeranian University of TechnologySzczecinPoland

Personalised recommendations