Skip to main content
Log in

Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript


Pseudomonas putida CGMCC3830 harboring nitrilase was used in isonicotinic acid production from 4-cyanopyridine. This nitrilase showed optimum activities towards 4-cyanopyridine at pH 7.5 and 45°C. The half-life of P. putida nitrilase was 93.3 h, 33.9 h, and 9.5 h at 30°C, 38°C, and 45°C, respectively. 4-Cyanopyridine (100 mM) was fully converted into isonicotinic acid within 20 min. The bench-scale production of isonicotinic acid was carried out using 3 mg of resting cells per mL in a 1 L system at 30°C and finally, 123 g L−1 of isonicotinic acid were obtained within 200 min without any by-products. The conversion reaction suffered from the product inhibition effect after the tenth feeding. The volumetric productivity was 36.9 g L−1 h−1. P. putida shows significant potential in nitrile hydrolysis for isonicotinic acid production. This paper is the first report on isonicotinic acid biosynthesis using Pseudomonas putida and it represents the highest isonicotinic acid production reported so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  • Arai, M., Alavi, Y. I. H., Mendoza, J., Billker, O., & Sinden, R. E. (2004). Isonicotinic acid hydrazide: an antituberculosis drug inhibits malarial transmission in the mosquito gut. Experimental Parasitology, 106, 30–36. DOI: 10.1016/j.exppara.2004.01.002.

    Article  CAS  Google Scholar 

  • Banerjee, A., Kaul, P., & Banerjee, U. C. (2006). Enhancing the catalytic potential of nitrilase from Pseudomonas putida for stereoselective nitrile hydrolysis. Applied Microbiology and Biotechnology, 72, 77–87. DOI: 10.1007/s00253-005-0255-8.

    Article  CAS  Google Scholar 

  • Chaplin, J. A., Levin, M. D., Morgan, B., Farid, N., Li, J., Zhu, Z., McQuaid, J., Nicholson, L. W., Rand, C. A., & Burk, M. J. (2004). Chemoenzymatic approaches to the dynamic kinetic asymmetric synthesis of aromatic amino acids. Tetrahedron: Asymmetry, 15, 2793–2796. DOI: 10.1016/j.tetasy.2004.07.060.

    Article  CAS  Google Scholar 

  • Gong, J. S., Lu, Z. M., Li, H., Shi, J. S., Zhou, Z. M., & Xu, Z. H. (2012). Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microbial Cell Factories, 11, 142. DOI: 10.1186/1475-2859-11-142.

    Article  CAS  Google Scholar 

  • Kiziak, C., Conradt, D., Stolz, A., Mattes, R., & Klein, J. (2005). Nitrilase from Pseudomonas fluorescens EBC191: cloning and heterologous expression of the gene and biochemical characterization of the recombinant enzyme. Microbiology, 151, 3639–3648. DOI: 10.1099/mic.0.28246-0.

    Article  CAS  Google Scholar 

  • Kumar, V., & Bhalla, T. C. (2013). Transformation of p-hydroxybenzonitrile to p-hydroxybenzoic acid using nitrilase activity of Gordonia terrae. Biocatalysis and Biotransformation, 31, 42–48. DOI: 10.3109/10242422.2012.757761.

    Article  Google Scholar 

  • Layh, N., Parratt, J., & Willetts, A. (1998). Characterization and partial purification of an enantioselective arylacetonitrilase from Pseudomonas fluorescens DSM 7155. Journal of Molecular Catalysis B: Enzymatic, 5, 467–474. DOI: 10.1016/s1381-1177(98)00075-7.

    Article  CAS  Google Scholar 

  • Maksimova, Yu. G., Vasilyev, D. M., Ovechkina, G. V., Maksimov, A. Yu., & Demakov, V. A. (2013). Transformation of 2- and 4-cyanopyridines by free and immobilized cells of nitrile-hydrolyzing bacteria. Applied Biochemistry and Microbiology, 49, 347–351. DOI: 10.1134/s000368381304008x.

    Article  CAS  Google Scholar 

  • Malandra, A., Cantarella, M., Kaplan, O., Vejvoda, V., Uhnáková, B., Štěpáková, B., Kubáč, D., & Martínková, L. (2009). Continuous hydrolysis of 4-cyanopyridine by nitrilases from Fusarium solani O1 and Aspergillus niger K10. Applied Microbiology and Biotechnology, 85, 277–284. DOI: 10.1007/s00253-009-2073-x.

    Article  CAS  Google Scholar 

  • Martínková, L., & Křen, V. (2010). Biotransformations with nitrilases. Current Opinion in Chemical Biology, 14, 130–137. DOI: 10.1016/j.cbpa.2009.11.018.

    Article  Google Scholar 

  • Sharma, N., Sharma, M., & Bhalla, T. (2012). Nocardia globerula NHB-2 nitrilase catalysed biotransformation of 4-cyanopyridine to isonicotinic acid. AMB Express, 2, 25. DOI: 10.1186/2191-0855-2-25.

    Article  Google Scholar 

  • Vejvoda, V., Kaplan, O., Kubáč, D., Křen, V., & Martínková, L. (2006). Immobilization of fungal nitrilase and bacterial amidase — two enzymes working in accord. Biocatalysis and Biotransformation, 24, 414–418. DOI: 10.1080/10242420601033910.

    Article  CAS  Google Scholar 

  • Zhu, X. Y., Gong, J. S., Li, H., Lu, Z. M., Zhou, Z. M., Shi, J. S., & Xu, Z. H. (2013a). Screening, identification and culture optimization of a newly isolated aromatic nitrilaseproducing bacterium — Pseudomonas putida CGMCC3830. Chinese Journal of Biotechnology, in press.

    Google Scholar 

  • Zhu, X. Y., Gong, J. S., Li, H., Lu, Z. M., Zhou, Z. M., Shi, J. S., & Xu, Z. H. (2013b). Characterization and functional cloning of an aromatic nitrilase from Pseudomonas putida CGMCC3830 with high conversion efficiency toward cyanopyridine. Journal of Molecular Catalysis B: Enzymatic, 97, 175–183. DOI: 10.1016/j.molcatb.2013.08.012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Zheng-Hong Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, XY., Gong, JS., Li, H. et al. Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida . Chem. Pap. 68, 739–744 (2014).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: