Skip to main content
Log in

A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers

  • Short Communication
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Molecularly imprinted polymer-coated bacterial cellulose nanofibers have been prepared by immersing solvent treated-bacterial cellulose into a dilute pre-polymerization mixture solution prior to the polymerization process. The quercetin-imprinted polymer coating bacterial cellulose (QIP-BC) nanofibers show discrete nanoparticles encapsulated along the BC nanofibers. The binding capacity of dried QIP-BC was approximately 3 mg per gram of the polymer. The obtained results indicated that QIP-BC nanofibers provided a three fold higher recognition ability for quercetin than quercetin-imprinted nanospheres. This technique can be easily used to combine two fascinating materials like BC nanofibers and molecularly imprinted polymers (MIPs) to afford promising polymer composites that are useful in various innovative applications in biomedical, pharmaceutical, and industrial sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Andrade, F. K., Costa, R., Domingues, L., Soares, R., & Gama, M. (2010). Improving bacterial cellulose for blood vessel replacement: Functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide. Acta Biomaterialia, 6, 4034–4041. DOI: 10.1016/j.actbio.2010.04.023.

    Article  CAS  Google Scholar 

  • Augusto, F., Hantao, L. W., Mogollón, N. G. S., & Braga, S. C. G. N. (2013). New materials and trends in sorbents for solidphase extraction. TrAC — Trends in Analytical Chemistry, 43, 14–23. DOI: 10.1016/j.trac.2012.08.012.

    Article  CAS  Google Scholar 

  • Chen, P., Cho, S. Y., & Jin, H. J. (2010). Modification and applications of bacterial celluloses in polymer science. Macromolecular Research, 18, 309–320. DOI: 10.1007/s13233-010-0404-5.

    Article  Google Scholar 

  • Chen, L., Xu, S., & Li, J. (2011). Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chemical Society Reviews, 40, 2922–2942. DOI: 10.1039/c0cs00084a.

    Article  CAS  Google Scholar 

  • Choi, Y. J., Ahn, Y., Kang, M. S., Jun, H. K., Kim, I. S., & Moon, S. H. (2004). Preparation and characterization of acrylic acid-treated bacterial cellulose cation-exchange membrane. Journal of Chemical Technology and Biotechnology, 79, 79–84. DOI: 10.1002/jctb.942.

    Article  CAS  Google Scholar 

  • Dobre, L. M., Stoica-Guzun, A., Stroescu, M., Jipa, I. M., Dobre, T., Ferdeş, M., & Ciumpiliac, S. (2012). Modelling of sorbic acid diffusion through bacterial cellulose-based antimicrobial films. Chemical Papers, 66, 144–151. DOI: 10.2478/s11696-011-0086-2.

    Article  CAS  Google Scholar 

  • Fu, L., Zhang, J., & Yang, G. (2013). Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydrate Polymers, 92, 1432–1442. DOI: 10.1016/j.carbpol.2012.10.071.

    Article  CAS  Google Scholar 

  • Gatenholm, P., & Klemm, D. (2010). Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bulletin, 35, 208–213. DOI: 10.1557/mrs2010.653.

    Article  CAS  Google Scholar 

  • Hobzova, R., Duskova-Smrckova, M., Michalek, J., Karpushkin, E., & Gatenholm, P. (2012). Methacrylate hydrogels reinforced with bacterial cellulose. Polymer International, 61, 1193–1201. DOI: 10.1002/pi.4199.

    Article  CAS  Google Scholar 

  • Huang, H. C., Chen, L. C., Lin, S. B., & Chen, H. H. (2011). Nano-biomaterials application: In situ modification of bacterial cellulose structure by adding HPMC during fermentation. Carbohydrate Polymers, 83, 979–987. DOI: 10.1016/j.carbpol.2010.09.011.

    Article  CAS  Google Scholar 

  • Kramer, F., Klemm, D., Schumann, D., Heßler, N., Wesarg, F., Fried, W., & Stadermann, D. (2006). Nanocellulose polymer composites as innovative pool for (bio)material development. Macromolecular Symposia, 244, 136–148. DOI: 10.1002/masy.200651213.

    Article  CAS  Google Scholar 

  • Mendoza, E. E., & Burd, R. (2011). Quercetin as a systemic chemopreventative agent: Structural and functional mechanisms. Mini-Reviews in Medicinal Chemistry, 11, 1216–1221. DOI: 10.2174/13895575111091216.

    CAS  Google Scholar 

  • Piacham, T., Josell, Å., Arwin, H., Prachayasittikul, V., & Ye, L. (2005). Molecularly imprinted polymer thin films on quartz crystal microbalance using a surface bound photoradical initiator. Analytica Chimica Acta, 536, 191–196. DOI: 10.1016/j.aca.2004.12.067.

    Article  CAS  Google Scholar 

  • Piacham, T., Nantasenamat, C., Suksrichavalit, T., Puttipanyalears, C., Pissawong, T., Maneewas, S., Isarankura-Na-Ayudhya, C., & Prachayasittikul, V. (2009). Synthesis and theoretical study of molecularly imprinted nanospheres for recognition of tocopherols. Molecules, 14, 2985–3002. DOI: 10.3390/molecules14082985.

    Article  CAS  Google Scholar 

  • Saliza, A., Yusof, N. A., Abdullah, A. H., & Haron, M. J. (2012). Synthesis and characterization of hybrid molecularly imprinted polymer (MIP) membranes for removal of methylene blue (MB). Molecules, 17, 1916–1928. DOI: 10.3390/molecules17021916.

    Article  Google Scholar 

  • Wang, J., Yang, C., Wan, Y., Luo, H., He, F., Dai, K., & Huang, Y. (2013). Laser patterning of bacterial cellulose hydrogel and its modification with gelatin and hydroxyapatite for bone tissue engineering. Soft Materials, 11, 173–180. DOI: 10.1080/1539445x.2011.611204.

    Article  CAS  Google Scholar 

  • Ye, L., Cormack, P. A. G., & Mosbach, K. (1999). Molecularly imprinted monodisperse microspheres for competitive radioassay. Analytical Communications, 36, 35–38. DOI: 10.1039/a809014i.

    Article  CAS  Google Scholar 

  • Ye, L., & Mosbach, K. (2008). Molecular imprinting: Synthetic materials as substitutes for biological antibodies and receptors. Chemistry of Materials, 20, 859–868. DOI: 10.1021/cm703190w.

    Article  CAS  Google Scholar 

  • Yoshimatsu, K., Ye, L., Stenlund, P., & Chronakis, I. S. (2008). A simple method for preparation of molecularly imprinted nanofiber materials with signal transduction ability. Chemical Communications, 2008, 2022–2024. DOI: 10.1039/b719586a.

    Article  Google Scholar 

  • Zhang, H., Piacham, T., Drew, M., Patek, M., Mosbach, K., & Ye, L. (2006). Molecularly imprinted nanoreactors for regioselective Huisgen 1,3-dipolar cycloaddition reaction. Journal of the American Chemical Society, 128, 4178–4179. DOI: 10.1021/ja057781u.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theeraphon Piacham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piacham, T., Isarankura-Na-Ayudhya, C. & Prachayasittikul, V. A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers. Chem. Pap. 68, 838–841 (2014). https://doi.org/10.2478/s11696-013-0515-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0515-5

Keywords

Navigation