Skip to main content
Log in

Immobilisation of acid pectinase on graphene oxide nanosheets

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Recent progress in nanotechnology has prompted research interest in immobilised enzymes on graphene oxide (GO) nanosheets for their large specific surface area and abundant functional groups. In the present work, acid pectinase was immobilised on the GO via the cross-linking of amino groups on pectinase and functional groups (e.g. carboxyl group) on the GO surface. Acid pectinase was effectively immobilised on the support and high loading densities were obtained (2400 mg per g of support). In addition, the immobilised enzyme achieved a better catalytic efficiency (K cat/K m) than its free counterpart; 3.7 mg−1 min−1 mL for immobilised pectinase, 3.5 mg−1 min−1 mL for free pectinase. Under acidic conditions, pectinase immobilised on GO will be agglomerated, but the addition of surfactant PEG 6000 could solve the problem and afford higher catalytic activity and catalytic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abad, J. M., Mertens, S. F. L., Pita, M., Fernández, V. M., & Schiffrin, D. J. (2005). Functionalization of thioctic acid-capped gold nanoparticles for specific immobilization of histidine-tagged proteins. Journal of the American Chemical Society, 127, 5689–5694. DOI: 10.1021/ja042717i.

    Article  CAS  Google Scholar 

  • Asuri, P., Bale, S. S., Pangule, R. C., Shah, D. A., Kane, R. S., & Dordick, J. S. (2007). Structure, function, and stability of enzymes covalently attached to single-walled carbon nanotubes. Langmuir, 23, 12318–12321. DOI: 10.1021/la702091c.

    Article  CAS  Google Scholar 

  • Bailey, M. J., & Pessa, E. (1990). Strain and process for production of polygalacturonase. Enzyme and Microbial Technology, 12, 266–271. DOI: 10.1016/0141-0229(90)90098-b.

    Article  CAS  Google Scholar 

  • Bayhan, M., & Tuncel, A. (1998). Uniform poly(isopropylacrylamide) gel beads for immobilization of α-chymotrypsin. Journal of Applied Polymer Science, 67, 1127–1139. DOI: 10.1002/(SICI)1097-4628(19980207)67:6<1127::AID-APP21>3.0.CO;2-W.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. DOI:10.1016/0003-2697(76)90527-3.

    Article  CAS  Google Scholar 

  • Bučko, M., Mislovičoválka, J., Vikartovská, A., Šefčovičov, J., Katrlík, J., Tkčík, I., Štefuca, V., Polakovič, M., Rosenberg, M., Rebroš, M., ŠmogrovičovŠvitel, J. (2012). Immobilization in biotechnology and biorecognition: from macro- to nanoscale systems. Chemical Papers, 66, 983–998. DOI:10.2478/s11696-012-0226-3.

    Article  Google Scholar 

  • Demir, N., Acar, J., Sarıoğlu, K.,& Mutlu, M. (2001). The use of commercial pectinase in fruit juice industry. Part 3: Immobilized pectinase for mash treatment. Journal of Food Engineering, 47, 275–280. DOI:10.1016/s0260-8774(00)00127-8.

    Article  Google Scholar 

  • Gao, Y., & Kyratzis, I. (2008). Covalent immobilization of proteins on carbon nanotubes using the cross-linker 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-a critical assessment. Bioconjugate Chemistry, 19, 1945–1950. DOI: 10.1021/bc800051c.

    Article  CAS  Google Scholar 

  • Jiang, Y., Guo, C., Xia, H., Mahmood, I., Liu, C.,& Liu, H. (2009). Magnetic nanoparticles supported ionic liquids for lipase immobilization: Enzyme activity in catalyzing esterification. Journal of Molecular Catalysis B: Enzymatic, 58, 103–109. DOI:10.1016/j.molcatb.2008.12.001.

    Article  CAS  Google Scholar 

  • Kim, H.,& Macosko, C. W. (2009). Processing-property relationships of polycarbonate/graphene composites. Polymer, 50, 3797–3809. DOI:10.1016/j.polymer.2009.05.038.

    Article  CAS  Google Scholar 

  • Kim, J., Cote, L. J., & Huang, J. (2012). Two dimensional soft material: New faces of graphene oxide. Accounts of Chemical Research, 45, 1356–1364. DOI: 10.1021/ar300047s.

    Article  CAS  Google Scholar 

  • Klibanov, A. M. (1983). Immobilized enzymes and cells as practical catalysts. Science, 219, 722–727. DOI:10.1126/science.219.4585.722.

    Article  CAS  Google Scholar 

  • Kumar, A., Sharma, V., Sharma, P., & Kanwar, S. S. (2013). Effective immobilisation of lipase to enhance esterification potential and reusability. Chemical Papers, 67, 696–702. DOI: 10.2478/s11696-013-0377-x.

    Article  CAS  Google Scholar 

  • Lei, Z.,& Bi, S. (2007). The silica-coated chitosan particle from a layer-by-layer approach for pectinase immobilization. Enzyme and Microbial Technology, 40, 1442–1447. DOI:10.1016/j.enzmictec.2006.10.027.

    Article  CAS  Google Scholar 

  • Li, S. F., Chen, J. P.,& Wu, W. T. (2007). Electrospun polyacrylonitrile nanofibrous membranes for lipase immobilization. Journal of Molecular Catalysis B: Enzymatic, 47, 117–124. DOI:10.1016/j.molcatb.2007.04.010.

    Article  CAS  Google Scholar 

  • Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428. DOI:10.1021/ac60147a030.

    Article  CAS  Google Scholar 

  • Mutlu, M., Sarıoğlu, K., Demir, N., Ercan, M. T.,& Acar, J. (1999). The use of commercial pectinase in fruit juice industry. Part I: viscosimetric determination of enzyme activity. Journal of Food Engineering, 41, 147–150. DOI:10.1016/s0260-8774(99)00088-6.

    Article  Google Scholar 

  • Noureddini, H., Gao, X.,& Philkana, R. S. (2005). Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresource Technology, 96, 769–777. DOI: 10.1016/j.biortech.2004.05.029.

    Article  CAS  Google Scholar 

  • Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V.,& Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306, 666–669. DOI:10.1126/science.1102896.

    Article  CAS  Google Scholar 

  • Park, M., Park, S. S., Selvaraj, M., Zhao, D.,& Ha, C. S. (2009). Hydrophobic mesoporous materials for immobilization of enzymes. Microporous and Mesoporous Materials, 124, 76–83. DOI: 10.1016/j.micromeso.2009.04.032.

    Article  CAS  Google Scholar 

  • Pollak, A., Blumenfeld, H., Wax, M., Baughn, R. L.,& Whitesides, G. M. (1980). Enzyme immobilization by condensation copolymerization into crosslinked polyacrylamide gels. Journal of the American Chemical Society, 102, 6324–6336. DOI:10.1021/ja00540a026.

    Article  CAS  Google Scholar 

  • Qi, B., Chen, X., & Wan, Y. (2010). Pretreatment of wheat straw by nonionic surfactant-assisted dilute acid for enhancing enzymatic hydrolysis and ethanol production. Bioresource Technology, 101, 4875–4883. DOI: 10.1016/j.biortech.2010.01.063.

    Article  CAS  Google Scholar 

  • Singh, V.K., Patra, M.K., Manoth, M., Gowd, G. S., Vadera, S. R., & Kumar, N. (2009). In situ synthesis of graphene oxide and its composites with iron oxide. New Carbon Materials, 24, 147–152. DOI: 10.1016/s1872-5805(08)60044-x.

    Article  CAS  Google Scholar 

  • Stuart, B. H. (2004). Infrared spectroscopy: fundamentals and applications (Chapter 3, pp. 45–70). Chichester, UK: Wiley. DOI: 10.1002/0470011149.

    Book  Google Scholar 

  • Su, R., Shi, P., Zhu, M., Hong, F.,& Li, D. (2012). Studies on the properties of graphene oxide-alkaline protease bio-composites. Bioresource Technology, 115, 136–140. DOI:10.1016/j.biortech.2011.12.085.

    Article  CAS  Google Scholar 

  • Wang, S., Bao, H., Yang, P., & Chen, G. (2008). Immobilization of trypsin in polyaniline-coated nano-Fe3O4/carbon nanotube composite for protein digestion. Analytica Chimica Acta, 612, 182–189. DOI: 10.1016/j.aca.2008.02.035.

    Article  CAS  Google Scholar 

  • Wang, Y., Li, Z., Wang, J., Li, J.,& Lin, Y. (2011). Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends in Biotechnology, 29, 205–212. DOI:10.1016/j.tibtech.2011.01.008.

    Article  Google Scholar 

  • Wei, T., Luo, G., Fan, Z., Zheng, C., Yan, J., Yao, C., Li, W.,& Zhang, C. (2009). Preparation of graphene nanosheet/polymer composites using in situ reduction-extractive dispersion. Carbon, 47, 2296–2299. DOI:10.1016/j.carbon.2009.04.030.

    Article  CAS  Google Scholar 

  • Zhang, J., Zhang, F., Yang, H., Huang, X., Liu, H., Zhang, J., & Guo, S. (2010). Graphene oxide as a matrix for enzyme immobilization. Langmuir, 26, 6083–6085. DOI: 10.1021/la904014z.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Li or Geng-Sheng Ji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Li, Q., Feng, YY. et al. Immobilisation of acid pectinase on graphene oxide nanosheets. Chem. Pap. 68, 732–738 (2014). https://doi.org/10.2478/s11696-013-0510-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0510-x

Keywords

Navigation