Skip to main content
Log in

Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this study, Cu(II)-ion-imprinted membrane adsorbents were prepared via cross-linking of blended chitosan/poly(vinyl alcohol) using glutaraldehyde as cross-linker and copper ions as template. The ability of IIMs to adsorb copper ions from aqueous solutions was assessed using a batch of experiments under different conditions by changing cross-linking density (0.05 mass %, 0.1 mass %, and 0.2 mass %), template content (0.2 mass %, 0.5 mass %, and 0.9 mass %), initial analyte concentration (50 mg L−1, 100 mg L−1, and 150 mg L−1), and adsorbent concentration (0.5 g L−1, 1.0 g L−1, and 2.0 g L−1). The Taguchi method was used to plan a minimum number of experiments. The following optimal levels were thus determined for the four factors: cross-linking density: 0.1 mass %; template content: 0.5 mass %; initial analyte concentration: 150 mg L−1; and adsorbent concentration: 0.3 g L−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beppu, M., Arruda, E. J., Vieira, R. S., & Santos, N. N. (2004). Adsorption of Cu(II) on porous chitosan membranes functionalized with histidine. Journal of Membrane Science, 240, 227–235. DOI: 10.1016/j.memsci.2004.04.025.

    Article  CAS  Google Scholar 

  • Bogya, E. S., Barabás, R., Csavdári, C., Dejeu, V., & Bâldea, I. (2009). Hydroxyapatite modified with silica used for sorption of copper(II). Chemical Papers, 63, 568–573. DOI: 10.2478/s11696-009-0059-x.

    Article  CAS  Google Scholar 

  • Borneman, Z. (2007). Particle loaded membrane chromatography. Ph.D. thesis, University of Twente, Twente: The Netherlands.

    Google Scholar 

  • Bulgariu, L., Bulgariu, D., & Macoveanu, M. (2012). Characteristics of sorption of uncomplexed and complexed Pb(II) from aqueous solutions onto peat. Chemical Papers, 66, 239–247. DOI: 10.2478/s11696-012-0149-z.

    Article  CAS  Google Scholar 

  • Cao, J., Tan, Y. B., Che, Y. J., & Xin, H. P. (2010). Novel complex gel beads composed of hydrolyzed polyacrylamide and chitosan: An effective adsorbent for the removal of heavy metal from aqueous solution. Bioresource Technology, 101, 2558–2561. DOI: 10.1016/j.biortech.2009.10.069.

    Article  CAS  Google Scholar 

  • Chen, A. H., Yang, C. Y., Chen, C. Y., Chen, C. Y., & Chen, C. W. (2009). The chemically crosslinked metal-complexed chitosans for comparative adsorptions of Cu(II), Zn(II), Ni(II) and Pb(II) ions in aqueous medium. Journal of Hazardous Materials, 163, 1068–1075. DOI: 10.1016/j.jhazmat.2008.07.073.

    Article  CAS  Google Scholar 

  • Chen, J. H., Li, G. P., Liu, Q. L., Ni, J. C., Wu, W. B., & Lin, J. M. (2010). Cr(III) ionic imprinted polyvinyl alcohol/sodium alginate (PVA/SA) porous composite membranes for selective adsorption of Cr(III) ions. Chemical Engineering Journal, 165, 465–473. DOI: 10.1016/j.cej.2010.09.034.

    Article  CAS  Google Scholar 

  • Chen, J. H., Lin, H., Luo, Z. H., He, Y. S., & Li, G. P. (2011). Cu(II)-imprinted porous film adsorbent Cu-PVA-SA has high uptake capacity for removal of Cu(II) ions from aqueous solution. Desalination, 277, 265–273. DOI: 10.1016/j.desal.2011.04.040.

    Article  CAS  Google Scholar 

  • Ghaee, A., Shariaty-Niassar, M., Barzin, J., & Matsuura, T. (2010). Effects of chitosan membrane morphology on copper ion adsorption. Chemical Engineering Journal, 165, 46–55. DOI: 10.1016/j.cej.2010.08.051.

    Article  CAS  Google Scholar 

  • Guibal, E. (2004). Interactions of metal ions with chitosanbased sorbents: a review. Separation and Purification Technology, 38, 43–74. DOI: 10.1016/j.seppur.2003.10.004.

    Article  CAS  Google Scholar 

  • Koyano, T., Koshizaki, N., Umehara, H., Nagura, M., & Minoura, N. (2000). Surface states of PVA/chitosan blended hydrogels. Polymer, 41, 4461–4465. DOI: 10.1016/s0032-3861(99)00675-8.

    Article  CAS  Google Scholar 

  • Lépinay, S., Kham, K., Millot, M. C., & Carbonnier, B. (2012). In-situ polymerized molecularly imprinted polymeric thin films used as sensing layers in surface plasmon resonance sensors: Mini-review focused on 2010-2011. Chemical Papers, 66, 340–351. DOI: 10.2478/s11696-012-0134-6.

    Article  Google Scholar 

  • Li, N., & Bai, R. (2005). Copper adsorption on chitosan-cellulose hydrogel beads: behaviors and mechanisms. Separation and Purification Technology, 42, 237–247. DOI: 10.1016/j.seppur.2004.08.002.

    Article  CAS  Google Scholar 

  • Lufting, J. T., & Jordan, V. S. (1998). Design of experiments in quality engineering. New York, NY, USA: McGraw-Hill.

    Google Scholar 

  • Mohammadi, T., & Safavi, M. A. (2009). Application of Taguchi method in optimization of desalination by vacuum membrane distillation. Desalination, 249, 83–89. DOI: 10.1016/j.desal.2009.01.017.

    Article  CAS  Google Scholar 

  • Peydayesh, M., Esfandyari, G. R., Mohammadi, T., & Alamdari, E. K. (2013). Pertraction of cadmium and zinc ions using a supported liquid membrane impregnated with different carriers. Chemical Papers, 67, 389–397. DOI: 10.2478/s11696-013-0310-3.

    Article  CAS  Google Scholar 

  • Shawky, H. A. (2009). Synthesis of ion-imprinting chitosan/PVA crosslinked membrane for selective removal of Ag(I). Journal of Applied Polymer Science, 114, 2608–2615. DOI: 10.1002/app.30816.

    Article  CAS  Google Scholar 

  • Tasselli, F., Donato, L., & Drioli, E. (2008). Evaluation of molecularly imprinted membranes based on different acrylic copolymers. Journal of Membrane Science, 320, 167–172. DOI: 10.1016/j.memsci.2008.03.071.

    Article  CAS  Google Scholar 

  • Tofighy, M. A., Shirazi, Y., Mohammadi, T., & Pak, A. (2011). Salty water desalination using carbon nanotubes membrane. Chemical Engineering Journal, 168, 1064–1072. DOI: 10.1016/j.cej.2011.01.086.

    Article  CAS  Google Scholar 

  • Varma, A. J., Deshpande, S. V., & Kennedy, J. F. (2004). Metal complexation by chitosan and its derivatives: a review. Carbohydrate Polymers, 55, 77–93. DOI: 10.1016/j.carbpol.2003.08.005.

    Article  CAS  Google Scholar 

  • Vatanpour, V., Madaeni, S. S., Zinadini, S., & Rajabi, H. R. (2011). Development of ion imprinted technique for designing nickel ion selective membrane. Journal of Membrane Science, 373, 36–42. DOI: 10.1016/j.memsci.2011.02.030.

    Article  CAS  Google Scholar 

  • Vieira, R. S., & Beppu, M. M. (2006). Interaction of natural and crosslinked chitosan membranes with Hg(II) ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 279, 196–207. DOI: 10.1016/j.colsurfa.2006.01.026.

    Article  CAS  Google Scholar 

  • Vold, I. M. N., Vårum, K. M., Guibal, E., & Smidsrød, O. (2003). Binding of ions to chitosan-selectivity studies. Carbohydrate Polymers, 54, 471–477. DOI: 10.1016/j.carbpol.2003.07.001.

    Article  CAS  Google Scholar 

  • Wan Ngah, W. S., Kamari, A., & Koay, Y. J. (2004). Equilibrium and kinetics studies of adsorption of copper (II) on chitosan and chitosan/PVA beads. International Journal of Biological Macromolecules, 34, 155–161. DOI: 10.1016/j.ijbiomac.2004.03.001.

    Article  CAS  Google Scholar 

  • Wan Ngah, W. S., & Fatinathan, S. (2008). Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads. Chemical Engineering Journal, 143, 62–72. DOI: 10.1016/j.cej.2007.12.006.

    Article  Google Scholar 

  • Wang, X. J., Xu, Z. L., Bing, N. C., & Yang, Z. G. (2008). Preparation and characterization of metal-complex imprinted PVDF hollow fiber membranes. Journal of Applied Polymer Science, 109, 64–73. DOI: 10.1002/app.26805.

    Article  CAS  Google Scholar 

  • Wang, X. W., Zhang, L., Ma, C. L., Song, R. Y., Hou, H. B., & Li, D. L. (2009). Enrichment and separation of silver from waste solutions by metal ion imprinted membrane. Hydrometallurgy, 100, 82–86. DOI: 10.1016/j.hydromet.2009.10.006.

    Article  CAS  Google Scholar 

  • Wang, Z. Q., Wang, M., Wu, G. H., Shen, Y. Y., & He, C. Y. (2010). Ion imprinted sol-gel nanotubes membrane for selective separation of copper ion from aqueous solution. Microchimica Acta, 169, 195–200. DOI: 10.1007/s00604-010-0332-2.

    Article  CAS  Google Scholar 

  • Yan, M., & Ramström, O. (2005). Molecularly imprinted materials: Science and technology. New York, NY, USA: Marcel Dekker.

    Google Scholar 

  • Zhai, Y. H., Liu, Y. W., Chang, X. J., Ruan, X. F., & Liu, J. L. (2008). Metal ion-small molecule complex imprinted polymer membranes: Preparation and separation characteristics. Reactive and Functional Polymers, 68, 284–291. DOI: 10.1016/j.reactfunctpolym.2007.08.013.

    Article  CAS  Google Scholar 

  • Zhang, L., Yang, S. W., Han, T., Zhong, L. L., Ma, C. L., Zhou, Y. Z., & Han, X. L. (2012). Improvement of Ag(I) adsorption onto chitosan/triethanolamine composite sorbent by an ionimprinted technology. Applied Surface Science, 263, 696–703. DOI: 10.1016/j.apsusc.2012.09.143.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toraj Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarghami, S., Kazemimoghadam, M. & Mohammadi, T. Cu(II) removal enhancement from aqueous solutions using ion-imprinted membrane technique. Chem. Pap. 68, 809–815 (2014). https://doi.org/10.2478/s11696-013-0509-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0509-3

Keywords

Navigation