Skip to main content

Advertisement

Log in

Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The optimum content of cotton microfiber, initiator, cross-linker, and sodium hydroxide were determined using the central composite design method. Polymer hydrogels (PHGs) were characterized using Fourier-transform infrared (FT-IR), scanning electron microscopy, and thermal gravimetric analysis. A comparison between plain PHG and the polymer hydrogel composite (PHGC) in terms of biodegradation, swelling rate, and re-swelling capacity was carried out. The effect of PHGC on the sandy soil holding capacity, urea leaching loss rate (ULLR), and okra plant growth were evaluated. The highest water absorption capacity was obtained at 1.30 mass %, 0.15 mass %, 13.00 mass %, and 13.50 mass % of the initiator, cross-linker, sodium hydroxide, and cotton microfiber, respectively. Cotton microfiber has a prominent effect on the swelling rate, re-swelling capacity, and biodegradability of PHG. Okra plant growth and ULLR were positively affected by PHGC and the best leaching loss rate of 33.3 mass % was observed for the lowest urea loaded sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bledzki, A. K., Sperber, V. E., & Faruk, O. (2002). Natural and wood fibre reinforcement in polymers (Vol. 13). Shrewsbury, UK: Rapra Technology.

    Google Scholar 

  • Chun, C. J., Lee, S. M., Kim, S. Y., Yang, H. K.,& Song, S. C. (2009). Thermosensitive poly(organophosphazene)-paclitaxel conjugate gels for antitumor applications. Biomaterials, 30, 2349–2360. DOI: 10.1016/j.biomaterials.2008.12.083.

    Article  CAS  Google Scholar 

  • Guilherme, M. R., Reis, A. V., Takahashi, S. H., Rubira, A. F., Feitosa, J. P. A.,& Muniz, E. C. (2005). Synthesis of a novel superabsorbent hydrogel by copolymerization of acrylamide and cashew gum modified with glycidyl methacrylate. Carbohydrate Polymers, 61, 464–471. DOI: 10.1016/j.carbpol.2005.06.017.

    Article  CAS  Google Scholar 

  • Hamidi, M., Azadi, A.,& Rafiei, P. (2008). Hydrogel nanoparticles in drug delivery. Advanced Drug Delivery Reviews, 60, 1638–1649. DOI: 10.1016/j.addr.2008.08.002.

    Article  CAS  Google Scholar 

  • Hebeish, A., Hashem, M., Shaker, N., Ramadan, M., El-Sadek, B.,& Hady, M. A. (2009). New development for combined bioscouring and bleaching of cotton-based fabrics. Carbohydrate Polymers, 78, 961–972. DOI: 10.1016/j.carbpol.2009.07. 019.

    Article  CAS  Google Scholar 

  • Iovino, R., Zujjo, R., Rao, M. A., Cassar, L.,& Gianfreda, L. (2008). Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions. Polymer Degradation and Stability, 93, 147–157. DOI: 10.1016/j.polymdegradstab.2007.10.011.

    Article  CAS  Google Scholar 

  • Kim, S. J., Yoon, S. G., Lee, Y. M.,& Kim, S. I. (2003). Electrical sensitive behavior of poly(vinyl alcohol)/poly(diallyldimethylammonium chloride) IPN hydrogel. Sensors and Actuators B: Chemical, 88, 286–291. DOI: 10.1016/s0925-4005(02)00371-4.

    Article  CAS  Google Scholar 

  • Laftah, W. A., Hashim, S.,& Ibrahim, A. N. (2011). Polymer hydrogels: A review. Polymer — Plastics Technology and Engineering, 50, 1475–1486. DOI: 10.1080/03602559.2011.593 082.

    Article  CAS  Google Scholar 

  • Li, A., Wang, A. Q.,& Chen, J. M. (2004). Studies on poly(acrylic acid)/attapulgite superabsorbent composites. II. Swelling behaviors of superabsorbent composites in saline solutions and hydrophilic solvent-water mixtures. Journal of Applied Polymer Science, 94, 1869–1876. DOI: 10.1002/app.20850.

    Article  CAS  Google Scholar 

  • Liang, R., Yuan, H. B., Xi, G. X.,& Zhou, Q. X. (2009). Synthesis of wheat straw-g-poly(acrylic acid) superabsorbent composites and release of urea from it. Carbohydrate Polymers, 77, 181–187. DOI: 10.1016/j.carbpol.2008.12.018.

    Article  CAS  Google Scholar 

  • Lin, J. M., Tang, Q. W.,& Wu, J. H. (2007). The synthesis and electrical conductivity of a polyacrylamide/Cu conducting hydrogel. Reactive and Functional Polymers, 67, 489–494. DOI: 10.1016/j.reactfunctpolym.2007.02.002.

    Article  CAS  Google Scholar 

  • Meilert, K. T., Laub, D., & Kiwi, J. (2005). Photocatalytic self-cleaning of modified cotton textiles by TiO2 clusters attached by chemical spacers. Journal of Molecular Catalysis A: Chemical, 237, 101–108. DOI: 10.1016/j.molcata.2005.03.040.

    Article  CAS  Google Scholar 

  • Raj Singh, T. R., McCarron, P. A., Woolfson, A. D., & Donnelly, R. F. (2009). Investigation of swelling and network parameters of poly(ethylene glycol)-crosslinked poly(methyl vinyl ether-co-maleic acid) hydrogels. European Polymer Journal, 45, 1239–1249. DOI: 10.1016/j.eurpolymj.2008.12.019.

    Article  CAS  Google Scholar 

  • Rjiba, N., Nardin, M., Dréan, J. Y.,& Frydrych, R. (2007). A study of the surface properties of cotton fibers by inverse gas chromatography. Journal of Colloid and Interface Science, 314, 373–380. DOI: 10.1016/j.jcis.2007.05.058.

    Article  CAS  Google Scholar 

  • Shinoj, S., Visvanathan, R.,& Panigrahi, S. (2010). Towards industrial utilization of oil palm fibre: Physical and dielectric characterization of linear low density polyethylene composites and comparison with other fibre sources. Biosystems Engineering, 106, 378–388. DOI: 10.1016/j.biosystemseng.2010.04.008.

    Article  Google Scholar 

  • Spagnol, C., Rodrigues, F. H. A., Neto, A. G. V. C., Pereira, A. G. B., Fajardo, A. R., Radovanovic, E., Rubira, A. F.,& Muniz, E. C. (2012a). Nanocomposites based on poly(acrylamide-co-acrylate) and cellulose nanowhiskers. European Polymer Journal, 48, 454–463. DOI: 10.1016/j.eurpolymj.2011.12.005.

    Article  CAS  Google Scholar 

  • Spagnol, C., Rodrigues, F. H. A., Pereira, A. G. B., Fajardo, A. R., Rubira, A. F.,& Muniz, E. C. (2012b). Superabsorbent hydrogel nanocomposites based on starch-g-poly(sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose, 19, 1225–1237. DOI: 10.1007/s10570-012-9711-7.

    Article  CAS  Google Scholar 

  • Sreekala, M. S., Kumaran, M. G., & Thomas, S. (1997). Oil palm fibers: Morphology, chemical composition, surface modification, and mechanical properties. Journal of Applied Polymer Science, 66, 821–835. DOI: 10.1002/(sici)1097-4628(19971031)66:5〈821::aid-app2〉3.0.co;2-x.

    Article  CAS  Google Scholar 

  • Tang, Q. W., Wu, J. H., Sun, H., Fan, S. J., Hu, D.,& Lin, J. M. (2008). Superabsorbent conducting hydrogel from poly(acrylamide-aniline) with thermo-sensitivity and release properties. Carbohydrate Polymers, 73, 473–481. DOI: 10.1016/j.carbpol.2007.12.030.

    Article  CAS  Google Scholar 

  • Wang, W. B.,& Wang, A. Q. (2009). Synthesis, swelling behaviors, and slow-release characteristics of a guar gum-g-poly(sodium acrylate)/sodium humate superabsorbent. Journal of Applied Polymer Science, 112, 2102–2111. DOI: 10.1002/app.29620.

    Article  CAS  Google Scholar 

  • Wu, L., Liu, M. Z.,& Liang, R. (2008). Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention. Bioresource Technology, 99, 547–554. DOI: 10.1016/j.biortech.2006.12.027.

    Article  CAS  Google Scholar 

  • Xie, J. J., Liu, X. R., Liang, J. F.,& Luo, Y. S. (2009). Swelling properties of superabsorbent poly(acrylic acid-coacrylamide) with different crosslinkers. Journal of Applied Polymer Science, 112, 602–608. DOI: 10.1002/app.29463.

    Article  CAS  Google Scholar 

  • Xiong, Z. C., Chen, H. C., Huang, X. C., Xu, L. A., Zhang, L. F.,& Xiong, C. D. (2007). Preparation and properties of thermo-sensitive hydrogels of konjac glucomannan grafted N-isopropylacrylamide for controlled drug delivery. Iranian Polymer Journal, 6, 425–431.

    Google Scholar 

  • Yoshimura, T., Matsuo, K.,& Fujioka, R. (2006). Novel biodegradable superabsorbent hydrogels derived from cotton cellulose and succinic anhydride: Synthesis and characterization. Journal of Applied Polymer Science, 99, 3251–3256. DOI: 10.1002/app.22794.

    Article  CAS  Google Scholar 

  • Zhang, J. P.,& Wang, A. Q. (2007). Study on superabsorbent composites. IX: Synthesis, characterization and swelling behaviors of polyacrylamide/clay composites based on various clays. Reactive and Functional Polymers, 67, 737–745. DOI: 10.1016/j.reactfunctpolym.2007.05.001.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waham Ashaier Laftah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laftah, W.A., Hashim, S. Synthesis, optimization, characterization, and potential agricultural application of polymer hydrogel composites based on cotton microfiber. Chem. Pap. 68, 798–808 (2014). https://doi.org/10.2478/s11696-013-0507-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0507-5

Keywords

Navigation