Skip to main content
Log in

Carbon nanotube-layered double hydroxide nanocomposites

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Preparation of multiwalled carbon nanotube-layered double hydroxide (MWCNT-LDH) nano-composites by (i) the co-precipitation of LDH components and pristine or surface-treated MWCNT or (ii) the delamination of LDH and application of the layer-by-layer technique has been attempted. For MWCNT, two types of surface treatment were used, either the surface was hydroxylated and deprotonated or wrapped in a tenside (dodecylbenzenesulfonate, DBS). LDH was delaminated by N,N-dimethylformamide. The obtained materials were characterized by X-ray diffractometry (XRD), and by scanning and transmission electron microscopies (SEM and TEM). Element distribution was mapped with help of the X-ray energy dispersive spectroscopy (XEDS) available as an extension of the scanning electron microscope. MWCNT could not be sandwiched between the layers of LDH by any of the methods employed; however, tenside-treated bundles of MWCNT could be wrapped in LDH thus forming a nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aisawa, S., Takahashi, S., Ogasawara, W., Umetsu, Y., & Narita, E. (2001). Direct intercalation of amino acids into layered double hydroxides by coprecipitation. Journal of Solid State Chemistry, 162, 52–62. DOI: 10.1006/jssc.2001.9340.

    Article  CAS  Google Scholar 

  • Ambrogi, V., Fardella, G., Grandolini, G., & Perioli, L. (2001). Intercalation compounds of hydrotalcite-like anionic clays with antiinflammatory agents — I. Intercalation and in vitro release of ibuprofen. International Journal of Pharmaceutics, 220, 23–32. DOI: 10.1016/s0378-5173(01)00629-9.

    Article  CAS  Google Scholar 

  • An, Z., Zhang, W. H., Shi, H. M., & He, J. (2006). An effective heterogeneous L-proline catalyst for the asymmetric aldol reaction using anionic clays as intercalated support. Journal of Catalysis, 241, 319–327. DOI: 10.1016/j.jcat.2006.04.035.

    Article  CAS  Google Scholar 

  • Brown, G., & Gastuche, M. C. (1967). Mixed magnesium-aluminium hydroxides. II. Structure and structural chemistry of synthetic hydroxycarbonates and related minerals and compounds. Clay Minerals, 7, 193–201.

    Article  CAS  Google Scholar 

  • Cavani, F., Trifirò, F., & Vaccari, A. (1991). Hydrotalcitetype anionic clays: Preparation, properties and applications. Catalysis Today, 11, 173–301. DOI: 10.1016/0920-5861(91)80068-k.

    Article  CAS  Google Scholar 

  • Choudary, B. M., Kavita, B., Chowdari, N. S., Sreedhar, B., & Kantam, M. L. (2002). Layered double hydroxides containing chiral organic guests: Synthesis, characterization and applications for asymmetric C-C bond-forming reactions. Catalysis Letters, 78, 373–377. DOI: 10.1023/a:1014941625580.

    Article  CAS  Google Scholar 

  • Du, J., Wang, S. T., You, H., & Zhao, X. S. (2013). Understanding the toxicity of carbon nanotubes in the environment is crucial to the control of nanomaterials in producing and processing and the assessment of health risk for human: A review. Environmental Toxicology and Pharmacology, 36, 451–462. DOI: 10.1016/j.etap.2013.05.007.

    Article  CAS  Google Scholar 

  • Duan, X., Lu, J., & Evans, G. D. (2011). Assembly chemistry of anion-intercalated layered materials. In R. R. Xu, W. Q. Pang, & Q. S. Huo (Eds.), Modern inorganic synthetic chemistry (pp. 375–404). Amsterdam, The Netherlands: Elsevier. DOI: 10.1016/b978-0-444-53599-3.10017-4.

    Chapter  Google Scholar 

  • Dupuis, A. C. (2005). The catalyst in the CCVD of carbon nanotubes-a review. Progress in Materials Science, 50, 929–961. DOI: 10.1016/j.pmatsci.2005.04.003.

    Article  CAS  Google Scholar 

  • Evans, D. G., & Slade, R. C. T. (2006). Structural aspects of layered double hydroxides. Structure and Bonding, 119, 1–87. DOI: 10.1007/430 005.

    CAS  Google Scholar 

  • He, J., Wei, M., Li, B., Kang, Y., Evans, D. G., & Duan, X. (2006). Preparation of layered double hydroxides. Structure and Bonding, 119, 89–119. DOI: 10.1007/430006.

    Article  CAS  Google Scholar 

  • Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56–58. DOI: 10.1038/354056a0.

    Article  CAS  Google Scholar 

  • Kim, T. H., Heo, I., Paek, S. M., Park, C. B., Choi, A. J., Lee, S. H., Choy, J. H., & Oh, J. M. (2012). Layered metal hydroxides containing calcium and their structural analysis. Bulletin of the Korean Chemical Society, 33, 1845–1850. DOI: 10.5012/bkcs.2012.33.6.1845.

    Article  CAS  Google Scholar 

  • Li, L., Ma, R. Z., Ebina, Y., Iyi, N., & Sasaki, T. (2005). Positively charged nanosheets derived via total delamination of layered double hydroxides. Chemistry of Materials, 17, 4386–4391. DOI: 10.1021/cm0510460.

    Article  CAS  Google Scholar 

  • Liu, Z. P., Ma, R. Z., Ebina, Y., Iyi, N., Takada, K., & Sasaki, T. (2007). General synthesis and delamination of highly crystalline transition-metal-bearing layered double hydroxides. Langmuir, 23, 861–867. DOI: 10.1021/la062345m.

    Article  CAS  Google Scholar 

  • Pálinkó, I. (2006). Organic-inorganic nanohybrids of biologically important molecules and layered double hydroxides. Nanopages, 1, 295–314. DOI: 10.1556/nano.1.2006.3.2.

    Article  Google Scholar 

  • Rousselot, I., Taviot-Guého, C., Leroux, F., Léone, P., Palvadeau, P., & Besse, J. P. (2002). Insights on the structural chemistry of hydrocalumite and hydrotalcite-like materials: Investigation of the series Ca2M3+ (OH)6Cl ·2H2O (M3+: Al3+, Ga3+, Fe3+, and Sc3+) byX-ray powder diffraction. Journal of Solid State Chemistry, 167, 137–144. DOI: 10.1006/jssc.2002.9635.

    Article  CAS  Google Scholar 

  • Shi, H. M., & He, J. (2011). Orientated intercalation of tartrate as chiral ligand to impact asymmetric catalysis. Journal of Catalysis, 279, 155–162. DOI: 10.1016/j.jcat.2011.01.012.

    Article  CAS  Google Scholar 

  • Srivastava, S., & Kotov, N. A. (2008). Composite layer-bylayer (LBL) assembly with inorganic nanoparticles and nanowires. Accounts of Chemical Research, 41, 1831–1841. DOI: 10.1021/ar8001377.

    Article  CAS  Google Scholar 

  • Taylor, H. F. W. (1969). Segregation and cation-ordering in sjögrenite and pyroaurite. Mineralogical Magazine, 37, 338–342. DOI: 10.1180/minmag.1969.037.287.04.

    Article  CAS  Google Scholar 

  • Vaccari, A. (1998). Preparation and catalytic properties of cationic and anionic clays. Catalysis Today, 41, 53–71. DOI: 10.1016/s0920-5861(98)00038-8.

    Article  CAS  Google Scholar 

  • Vieille, L., Moujahid, E. M., Taviot-Guého, C., Cellier, J., Besse, J. P., & Leroux, F. (2004). In situ polymerization of interleaved monomers: a comparative study between hydrotalcite and hydrocalumite host structures. Journal of Physics and Chemistry of Solids, 65, 385–393. DOI: 10.1016/j.jpcs.2003.08.029.

    Article  CAS  Google Scholar 

  • Zhao, M. Q., Zhang, Q., Huang, J. Q., & Wei, F. (2012). Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides — Properties, synthesis, and applications. Advanced Functional Materials, 22, 675–694. DOI: 10.1002/adfm.201102222.

    Article  CAS  Google Scholar 

  • Zümreoglu-Karan, B., & Ay, A. N. (2012). Layered double hydroxides — multifunctional nanomaterials. Chemical Papers, 66, 1–10. DOI: 10.2478/s11696-011-0100-8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to István Pálinkó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tóth, V., Sipiczki, M., Bugris, V. et al. Carbon nanotube-layered double hydroxide nanocomposites. Chem. Pap. 68, 650–655 (2014). https://doi.org/10.2478/s11696-013-0499-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0499-1

Keywords

Navigation