Skip to main content

Catalysis and reaction mechanisms of N-formylation of amines using Fe(III)-exchanged sepiolite

Abstract

This study presents a rapid, economical and “green” N-formylation of anilines with formic acid (FA) using Fe(III)-exchanged sepiolite (IES) as a catalyst. The IES exhibited excellent catalytic properties and the reactions were complete within 20.90 min to afford products with high yields. The adsorption mechanism of FA on the IES sample was studied by infrared (IR) spectroscopy at a temperature range of 120–400°C. The thermal desorption of pyridine was detected by the IR technique to estimate the acidity of IES. Lewis acid-bound pyridine bands at 1618–1631 cm-1 and 1443–1445 cm-1 were observed even after the IES sample was heated above 400°C.

This is a preview of subscription content, access via your institution.

References

  1. Aramendía, M. A., Borau, V., Jiménez, C., Marinas, J. M., Porras, A., Urbano, F. J., & Villar, L. (1994). Sepiolites as supports for Pd catalysts used in organic reduction processes. Journal of Molecular Catalysis, 94, 131–147. DOI: 10.1016/0304-5102(94)87034-9.

    Article  Google Scholar 

  2. Borowiak, M. A., Jamróz, M. H., & Larsson, R. (2000). Catalytic decomposition of formic acid on oxide catalysts. III. IOM model approach to bimolecular mechanism. Journal of Molecular Catalysis A: Chemical, 152, 121–132. DOI: 10.1016/s1381-1169(99)00271-x.

    CAS  Article  Google Scholar 

  3. Chen, B. C., Bednarz, M. S., Zhao, R., Sundeen, J. E, Chen, P., Shen, Z., Skoumbourdis, A. P., & Barrish, J. C. (2000). A new facile method for the synthesis of 1-arylimidazole-5-carboxylates. Tetrahedron Letters, 41, 5453–5456. DOI: 10.1016/s0040-4039(00)00910-2.

    CAS  Article  Google Scholar 

  4. Das, B., Krishnaiah, M., Balasubramanyam, P., Veeranjaneyulu, B., & Kumar, D. N. (2008). A remarkably simple N-formylation of anilines using polyethylene glycol. Tetrahedron Letters, 49, 2225–2227. DOI: 10.1016/j.tetlet.2008.02.050.

    CAS  Article  Google Scholar 

  5. Dorado, F., de Lucas, A., García, P. B., Romero, A., & Valverde, J. L. (2006). Copper ion-exchanged and impregnated Fe-pillared clays: Study of the influence of the synthesis conditions on the activity for the selective catalytic reduction of NO with C3H6. Applied Catalysis A: General, 305, 189–196. DOI: 10.1016/j.apcata.2006.03.022.

    CAS  Article  Google Scholar 

  6. Eren, E., Gumus, H., & Sarihan, A. (2012). An investigation of the catalytic decomposition of formic acid on raw and manganese oxide coated sepiolite surfaces. Appied Clay Science, 62–63, 1–7. DOI: 10.1016/j.clay.2012.04.013.

    Article  Google Scholar 

  7. Eren, E., Gumus, H., Eren, B., & Sarihan, A. (2013). Surface acidity of H-birnessite: Infrared spectroscopic study of formic acid decomposition. Spectroscopy Letters, 46, 60–66. DOI: 10.1080/00387010.2012.666612.

    CAS  Article  Google Scholar 

  8. Figueiredo, F. C. A., Jordão, E., Landers, R., & Carvalho, W. A. (2009). Acidity control of ruthenium pillared clay and its application as a catalyst in hydrogenation reactions. Applied Catalysis A: General, 371, 131–141. DOI: 10.1016/j.apcata.2009.09.039.

    CAS  Article  Google Scholar 

  9. Flaherty, D.W., Berglund, S. P., & Mullins, C. B. (2010). Selective decomposition of formic acid on molybdenum carbide: A new reaction pathway. Journal of Catalysis, 269, 33–43. DOI: 10.1016/j.jcat.2009.10.012.

    CAS  Article  Google Scholar 

  10. Harja, M., Buema, G., Sutiman, D. M., & Cretescu, I. (2013). Removal of heavy metal ions from aqueous solutions using low-cost sorbents obtained from ash. Chemical Papers, 67, 497–508. DOI: 10.2478/s11696-012-0303-7.

    CAS  Article  Google Scholar 

  11. Hornácek, M., Hudec, P., & Smiešková, A. (2009). Synthesis and characterization of mesoporous molecular sieves. Chemical Papers, 63, 689–697. DOI: 10.2478/s11696-009-0066-y.

    Article  Google Scholar 

  12. Isahak, W. N. R. W., Ismail, M., Jahim, J. M., Salimon, J., & Yarmo, M. A. (2012). Characterisation and performance of three promising heterogeneous catalysts in transesterification of palm oil. Chemical Papers, 66, 178–187. DOI: 10.2478/s11696-011-0125-z.

    CAS  Article  Google Scholar 

  13. Ivanov, E. A., Popova, G. Y., Chesalov, Y. A., & Andrushkevich, T. V. (2009). In situ FTIR study of the kinetics of formic acid decomposition on V-Ti oxide catalyst under stationary and non-stationary conditions. Determination of kinetic constants. Journal of Molecular Catalysis A: Chemical, 312, 92–96. DOI: 10.1016/j.molcata.2009.07.022.

    CAS  Article  Google Scholar 

  14. Jóna, E., Rudinská, E., Kubranová, M., Sapietová, M., Pajtášová, M., & Jorík, V. (2005). Intercalation of pyridine derivatives and complex formation in the interlayer space of Cu(II)-montmorillonite. Chemical Papers, 59, 248–250.

    Google Scholar 

  15. Jung, S. H., Ahn, J. H., Park, S. K., & Choi, J. K. (2002). A practical and convenient procedure for the N-formylation of amines using formic acid. Bulletin of the Korean Chemical Society, 23, 149–150. DOI: 10.5012/bkcs.2002.23.1.149.

    CAS  Article  Google Scholar 

  16. Karamanis, D., Ökte, A. N., Vardoulakis, E., & Vaimakis, T. (2011). Water vapor adsorption and photocatalytic pollutant degradation with TiO2-sepiolite nanocomposites. Applied Clay Science, 53, 181–187. DOI: 10.1016/j.clay.2010.12.012.

    CAS  Article  Google Scholar 

  17. Kim, J. G., & Jang, D. O. (2010). Solvent-free zinc-catalyzed amine N-formylation. Bulletin of the Korean Chemical Society, 31, 2989–2991. DOI: 10.5012/bkcs.2010.31.10.2989.

    CAS  Article  Google Scholar 

  18. Kobayashi, S., & Nishio, K. (1994). Facile and highly stereoselective synthesis of homoallylic alcohols using organosilicon intermediates. The Journal of Organic Chemistry, 59, 6620–6628. DOI: 10.1021/jo00101a021.

    CAS  Article  Google Scholar 

  19. Kobayashi, S., Yasuda, M., & Hachiya, I. (1996). Trichlorosilane-dimethylformamide (Cl3SiH-DMF) as an efficient reducing agent. Reduction of aldehydes and imines and reductive amination of aldehydes under mild conditions using hypervalent hydridosilicates. Chemistry Letters, 25, 407–408. DOI: 10.1016/s0040-4039(99)01554-3.

    Article  Google Scholar 

  20. Krishnakumar, B., & Swaminathan, M. (2011). A convenient method for the N-formylation of amines at room temperature using TiO2-P25 or sulfated titania. Journal of Molecular Catalysis A: Chemical, 334, 98–102. DOI: 10.1016/j.molcata.2010.11.002.

    CAS  Article  Google Scholar 

  21. Letaief, S., Grant, S., & Detellier, C. (2011). Phenol acetylation under mild conditions catalyzed by gold nanoparticles supported on functional pre-acidified sepiolite. Applied Clay Science, 53, 236–243. DOI: 10.1016/j.clay.2011.01.023.

    CAS  Article  Google Scholar 

  22. Long, R. Q., & Yang, R. T. (2000). The promoting role of rare earth oxides on Fe-exchanged TiO2-pillared clay for selective catalytic reduction of nitric oxide by ammonia. Applied Catalysis B: Environmental, 27, 87–95. DOI: 10.1016/s0926-3373(00)00140-5.

    CAS  Article  Google Scholar 

  23. Ma’mani, L., Sheykhan, M., Heydari, A., Faraji, M., & Yamini, Y. (2010). Sulfonic acid supported on hydroxyapatite-encapsulated-γ-Fe2O3 nanocrystallites as a magnetically Bronsted acid for N-formylation of amines. Applied Catalysis A: General, 377, 64–69. DOI: 10.1016/j.apcata.2010.01.020.

    Article  Google Scholar 

  24. Miller, K. L., Falconer, J. L., & Medlin, J. W. (2011). Effect of water on the adsorbed structure of formic acid on TiO2 anatase (1 0 1). Journal of Catalysis, 278, 321–328. DOI: 10.1016/j.jcat.2010.12.019.

    CAS  Article  Google Scholar 

  25. Milt, V. G., Banus, E. D., Miro, E. E., Yates, M., Martin, J. C., Rasmussen, S. B., & Avila, P. (2010). Structured catalysts containing Co, Ba and K supported on modified natural sepiolite for the abatement of diesel exhaust pollutants. Chemical Engineering Journal, 157, 530–538. DOI: 10.1016/j.cej.2009.12.049.

    CAS  Article  Google Scholar 

  26. Reddy, P. G., Kumar, G. D. K., & Baskaran, S. (2000). A convenient method for the N-formylation of secondary amines and anilines using ammonium formate. Tetrahedron Letters, 41, 9149–9151. DOI: 10.1016/s0040-4039(00)01636-1.

    Article  Google Scholar 

  27. Reddy, C. R., Nagendrappa, G., & Prakash, B. S. J. (2007). Surface acidity study of Mn+-montmorillonite clay catalysts by FT-IR spectroscopy: Correlation with esterification activity. Catalysis Communications, 8, 241–246. DOI: 10.1016/j.catcom.2006.06.023.

    CAS  Article  Google Scholar 

  28. Shimizu, K., Maruyama, R., Komai, S., Kodama, T., & Kitayama, Y. (2004). Pd-sepiolite catalyst for Suzuki coupling reaction in water: Structural and catalytic investigations. Journal of Catalysis, 227, 202–209. DOI: 10.1016/j.jcat.2004.07.012.

    CAS  Article  Google Scholar 

  29. Skoularikis, N. D., Coughlin, R. W., Kostapapas, A., Carrado, K., & Suib, S. L. (1988). Catalytic performance of iron (III) and chromium (III) exchanged pillared clays. Applied Catalysis, 39, 61–76. DOI: 10.1016/s0166-9834(00)80939-2.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bilge Eren.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eren, B., Aydin, R. & Eren, E. Catalysis and reaction mechanisms of N-formylation of amines using Fe(III)-exchanged sepiolite. Chem. Pap. 68, 584–590 (2014). https://doi.org/10.2478/s11696-013-0484-8

Download citation

Keywords

  • sepiolite
  • ion-exchanged
  • N-formylation
  • formic acid
  • catalysis