Chemical Papers

, Volume 68, Issue 4, pp 504–515 | Cite as

Electrochemical storage properties of polyaniline-, poly(N-methylaniline)-, and poly(N-ethylaniline)-coated pencil graphite electrodes

  • Andac Arslan
  • Evrim HurEmail author
Original Paper


Three types of conducting polymers, polyaniline (PANI), poly(N-methylaniline) (PNMA), poly(N-ethylaniline) (PNEA) were electrochemically deposited on pencil graphite electrode (PGE) surfaces characterized as electrode active materials for supercapacitor applications. The obtained films were electrochemically characterized using different electrochemical methods. Redox parameters, electro-active characteristics, and electrostability of the polymer films were investigated via cyclic voltammetry (CV). Doping types of the polymer films were determined by the Mott-Schottky method. Electrochemical capacitance properties of the polymer film coating PGE (PGE/PANI, PGE/PNMA, and PGE/PNEA) were investigated by the CV and potentiostatic electrochemical impedance spectroscopy (EIS) methods in a 0.1 M H2SO4 aqueous solution. Thus, capacitance values of the electrodes were calculated. Results show that PGE/PANI, PGE/PNMA, and PGE/PNEA exhibit maximum specific capacitances of 131.78 F g−1 (≈ 436.50 mF cm−2), 38.00 F g−1 (≈ 130.70 mF cm−2), and 16.50 F g−1 (≈ 57.83 mF cm−2), respectively. Moreover, charge-discharge capacities of the electrodes are reported and the specific power (SP) and specific energy (SE) values of the electrodes as supercapacitor materials were calculated using repeating chronopotentiometry.


conducting polymer polyaniline electropolymerization energy storage supercapacitor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arslan, A., & Hür, E. (2012). Supercapacitor applications of polyaniline and poly(N-methylaniline) coated pencil graphite electrode. International Journal of Electrochemical Science, 7, 12558–12572.Google Scholar
  2. Bereket, G., Hür, E., & Şahin, Y. (2005). Electrodeposition of polyaniline, poly(2-iodoaniline), and poly(aniline co-2-iodoaniline) on steel surfaces and corrosion protection of steel. Applied Surface Science, 252, 1233–1244. DOI: 10.1016/j.apsusc.2005.02.087.CrossRefGoogle Scholar
  3. Bian, C. Q., & Yu, A. S. (2010). De-doped polyaniline nanofibres with micropores for high-rate aqueous electrochemical capacitor. Synthetic Metals, 160, 1579–1583. DOI: 10.1016/j.synthmet.2010.04.019.CrossRefGoogle Scholar
  4. Bondarenko, A. S., & Ragoisha, G. A. (2005). Variable Mott-Schottky plots acquisition by potentiodynamic electrochemical impedance spectroscopy. Journal of Solid State Electrochemistry, 9, 845–849. DOI: 10.1007/s10008-005-0025-7.CrossRefGoogle Scholar
  5. Burke, A. (2002). Ultracapacitors: why, how, and where is the technology. Journal of Power Sources, 91, 37–50. DOI: 10.1016/s0378-7753(00)00485-7.CrossRefGoogle Scholar
  6. Chen, W. C., Wen, T. C., & Teng, H. S. (2003). Polyanilinedeposited porous carbon electrode for supercapacitor. Electrochimica Acta, 48, 641–649. DOI: 10.1016/s0013-4686(02) 00734-x.CrossRefGoogle Scholar
  7. Deshpande, P. P., Murali, M., Deshpande, P. P., Galphade, V. S., & More, M. A. (2013). Conducting poly(o-anisidine)-coated steel electrodes for supercapacitors. Chemical Papers, 67, 1066–1071. DOI: 10.2478/a11696-013-0317-9.CrossRefGoogle Scholar
  8. Dhawale, D. S., Vinu, A., & Lokhande, C. D. (2011). Stable nanostructured polyaniline electrode for supercapacitor application. Electrochimica Acta, 56, 9482–9487. DOI: 10.1016/j.electacta.2011.08.042.CrossRefGoogle Scholar
  9. Dubal, D. P., Kim, W. B., & Lokhande, C. D. (2012). Galvanostatically deposited Fe: MnO2 electrodes for supercapacitor application. Journal of Physics and Chemistry of Solids, 73, 18–24. DOI: 10.1016/j.jpcs.2011.09.005.CrossRefGoogle Scholar
  10. Duran, B., Bereket, G., Turhan, M. C., & Virtanen, S. (2011). Poly(N-methyl aniline) thin films on copper: Synthesis, characterization and corrosion protection. Thin Solid Films, 519, 5868–5874. DOI: 10.1016/j.tsf.2011.02.084.CrossRefGoogle Scholar
  11. Faye, A., Dione, G., Dieng, M. M., Aaron, J. J., Cachet, H., & Cachet, C. (2010). Usefulness of a composite electrode with a carbon surface modified by electrosynthesized polypyrrole for supercapacitor applications. Journal of Applied Electrochemistry, 40, 1925–1931. DOI: 10.1007/s10800-010-0153-3.CrossRefGoogle Scholar
  12. Feng, G. L., Xiong, Y., Wang, H., & Yang, Y. J. (2008). Cyclic voltammetry investigation of diffusion of ferrocene within propylene carbonate organogel formed by gelator. Electrochimica Acta, 53, 8253–8257. DOI: 10.1016/j.electacta.2008.06.048.CrossRefGoogle Scholar
  13. Frackowiak, E., & Béguin, F. (2001). Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 39, 937–950. DOI: 10.1016/s0008-6223(00)00183-4.CrossRefGoogle Scholar
  14. Gujar, T. P., Kim, W. Y., Puspitasari, I., Jung, K. D., & Joo, O. S. (2007). Electrochemically deposited nanograin ruthenium oxide as a pseudocapacitive electrode. International Journal of Electrochemical Science, 2, 666–673.Google Scholar
  15. Gupta, V., & Miura, N. (2005). Electrochemically deposited polyaniline nanowire’s network: A high-performance electrode material for redox supercapacitor. Electrochemical and Solid-State Letters, 8, A630–A632. DOI: 10.1149/1.2087207.CrossRefGoogle Scholar
  16. Hou, Y., Cheng, Y. W., Hobson, T., & Liu, J. (2010). Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Letters, 10, 2727–2733. DOI: 10.1021/nl101723g.CrossRefGoogle Scholar
  17. Hu, Y., Zhu, H.W., Wang, J., & Chen, Z. X. (2011). Synthesis of layered birnessite-type manganese oxide thin films on plastic substrates by chemical bath deposition for flexible transparent supercapacitors. Journal of Alloys and Compounds, 509, 10234–10240. DOI: 10.1016/j.jallcom.2011.08.080.CrossRefGoogle Scholar
  18. Jiang, J. H., & Kucernak, A. (2002). Electrochemical supercapacitor material based on manganese oxide: preparation and characterization. Electrochimica Acta, 47, 2381–2386. DOI: 10.1016/s0013-4686(02)00031-2.CrossRefGoogle Scholar
  19. Jurewicz, K., Delpeux, S., Bertagna, V., Béguin, F., & Frackowiak, E. (2001). Supercapacitors from nanotubes/polypyrrole composites. Chemical Physics Letters, 347, 36–40. DOI: 10.1016/s0009-2614(01)01037-5.CrossRefGoogle Scholar
  20. Kim, J. H., Lee, Y. S., Sharma, A. K., & Liu, C. G. (2006). Polypyrrole/carbon composite electrode for high-power electrochemical capacitors. Electrochimica Acta, 52, 1727–1732. DOI: 10.1016/j.electacta.2006.02.059.CrossRefGoogle Scholar
  21. Kötz, R., & Carlen, M. (2000). Principles and applications of electrochemical capacitors. Electrochimica Acta, 45, 2483–2498. DOI: 10.1016/s0013-4686(00)00354-6.CrossRefGoogle Scholar
  22. Levine, K. L., Tallman, D. E., & Bierwagen, G. P. (2008). Mott-Schottky analysis of aluminium oxide formed in the presence of different mediators on the surface of aluminium alloy 2024-T3. Journal of Materials Processing Technology, 199, 321–326. DOI: 10.1016/j.jmatprotec.2007.08.023.CrossRefGoogle Scholar
  23. Lewandowski, A., Zajder, M., Frąckowiak, E., & Béguin, F. (2001). Supercapacitor based on activated carbon and polyethylene oxide-KOH-H2O polymer electrolyte. Electrochimica Acta, 46, 2777–2780. DOI: 10.1016/s0013-4686 (01)00496-0.CrossRefGoogle Scholar
  24. Li, Y., Zheng, J. L., Feng, J., & Jing, X. L. (2013). Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration. Chemical Papers, 67, 876–890. DOI: 10.2478/a11696-013-0347-3.CrossRefGoogle Scholar
  25. Liu, X. J., & Osaka, T. (1996). All-solid-state electric doublelayer capacitor with isotropic high-density graphite electrode and polyethylene oxide/LiClO4 polymer electrolyte. Journal of The Electrochemical Society, 143, 3982–3986. DOI: 10.1149/1.1837324.CrossRefGoogle Scholar
  26. Mastragostino, M., Arbizzani, C., & Soavi, F. (2001). Polymerbased supercapacitors. Journal of Power Sources, 97–98, 812–815. DOI: 10.1016/s0378-7753(01)00613-9.CrossRefGoogle Scholar
  27. Mozota, J., & Conway, B. E. (1983). Surface and bulk processes at oxidized iridium electrodes-I. Monolayer stage and transition to reversible multilayer oxide film behavior. Electrochimica Acta, 28, 1–8. DOI: 10.1016/0013-4686(83)85079-8.CrossRefGoogle Scholar
  28. Muthulakshmi, B., Kalpana, D., Pitchumani, S., & Renganathan, N. G. (2006). Electrochemical deposition of polypyrrole for symmetric supercapacitors. Journal of Power Sources, 158, 1533–1537. DOI: 10.1016/j.jpowsour.2005.10.013.CrossRefGoogle Scholar
  29. Patil, U. M., Kulkarni, S. B., Jamadade, V. S., & Lokhande, C. D. (2011). Chemically synthesized hydrous RuO2 thin films for supercapacitor application. Journal of Alloys and Compounds, 509, 1677–1682. DOI: 10.1016/j.jallcom.2010.09.133.CrossRefGoogle Scholar
  30. Pournaghi-Azar, M. H., & Habibi, B. (2007). Electropolymerization of aniline in acid media on the bare and chemically pre-treated aluminum electrodes: A comparative characterization of the polyaniline deposited electrodes. Electrochimica Acta, 52, 4222–4230. DOI: 10.1016/j.electacta.2006.11.050.CrossRefGoogle Scholar
  31. Rios, E. C., Rosario, A. V., Mello, R. M. Q., & Micaroni, L. (2007). Poly(3-metylthiophene)/MnO2 composite electrode as electrochemical capacitors. Journal of Power Sources, 163, 1137–1142. DOI: 10.1016/j.jpowsour.2006.09.056.CrossRefGoogle Scholar
  32. Ryu, K. S., Kee, Y. G., Kim, K. M., Park, Y. J., Hong, Y. S., Wu, X. L., Kang, M. G., Park, N. G., Song, R. Y., & Ko, J. M. (2005). Electrochemical capacitor with chemically polymerized conducting polymer based on activated carbon as hybrid electrodes. Synthetic Metals, 153, 89–92. DOI: 10.1016/j.synthmet.2005.07.167.CrossRefGoogle Scholar
  33. Saraç, A. S., Doğru, E., Ateş, M., & Parlak, E. A. (2006). Electrochemical synthesis of N-methylpyrrole and N-methylcarbazole copolymer on carbon fiber microelectrodes, and their characterization. Turkish Journal of Chemistry, 30, 401–418Google Scholar
  34. Shadi, L., Gheybi, H., Entezami, A. A., & Safa, K. D. (2012). Synthesis and characterization of N- and O-alkylated poly[aniline-co-N-(2-hydroxyethyl) aniline]. Journal of Applied Polymer Science, 124, 2118–2126. DOI: 10.1002/app.35218.CrossRefGoogle Scholar
  35. Simon, P., & Gogotsi, Y. (2008). Materials for electrochemical capacitors. Nature Materials, 7, 845–854. DOI: 10.1038/nmat2297.CrossRefGoogle Scholar
  36. Sivakkumar, S. R., & Saraswathi R. (2004). Performance evaluation of poly(N-methylaniline) and polyisothianaphthene in charge-storage devices. Journal of Power Sources, 137, 322–328. DOI: 10.1016/j.jpowsour.2004.05.060.CrossRefGoogle Scholar
  37. Snook, G. A., Kao, P., & Best, A. S. (2011). Conductingpolymer-based supercapacitor devices and electrodes. Journal of Power Sources, 196, 1–12. DOI: 10.1016/j.jpowsour.2010.06.084.CrossRefGoogle Scholar
  38. Sutar, D., Menon, R., & Subramanyam, S. V. (2002). Study of electrical conduction in polypyrrole by varying the doping level. Thin Solid Films, 417, 40–42. DOI: 10.1016/s0040-6090(02)00649-1.CrossRefGoogle Scholar
  39. Tripathi, S. K., Kumar, A., & Hashmi, S. A. (2006). Electrochemical redox supercapacitors using PVdF-HFP based gel electrolytes and polypyrrole as conducting polymer electrode. Solid State Ionics, 177, 2979–2985. DOI: 10.1016/j.ssi.2006.03.059.CrossRefGoogle Scholar
  40. Wahdame, B., Candusso, D., François, X., Harel, F., Kauffmann, J. M., & Coquery, G. (2009). Design of experiment techniques for fuel cell characterization and development. International Journal of Hydrogen Energy, 34, 967–980. DOI: 10.1016/j.ijhydene.2008.10.066.CrossRefGoogle Scholar
  41. Wang, J., Xu, Y. L., Chen, X., & Du, X. F. (2007a). Electrochemical supercapacitor electrode material based on poly(3,4-ethylenedioxythiophene)/polypyrrole composite. Journal of Power Sources, 163, 1120–1125. DOI: 10.1016/j.jpowsour.2006.10.004.CrossRefGoogle Scholar
  42. Wang, J., Xu, Y. L, Chen, X., & Sun, X. F. (2007b). Capacitance properties of single wall carbon nanotube/polypyrrole composite films. Composites Science and Technology, 67, 2981–2985. DOI: 10.1016/j.compscitech.2007.05.015.CrossRefGoogle Scholar
  43. Wu, M. S., Huang, Y. A., Yang, C. H., & Jow, J. J. (2007). Electrodeposition of nanoporous nickel oxide film for electrochemical capacitors. International Journal of Hydrogen Energy, 32, 4153–4159. DOI: 10.1016/j.ijhydene.2007.06.001.CrossRefGoogle Scholar
  44. Xu, H. L., Cao, Q., Wang, X. Y., Li, W. J., Li, X. Y., & Deng, H. Y. (2010). Properties and chemical oxidation polymerization of polyaniline/neutral red/TiO2 composite electrodes. Materials Science and Engineering: B, 171, 104–108. DOI: 10.1016/j.mseb.2010.03.081.CrossRefGoogle Scholar
  45. Zhang, Y., Feng, H., Wu, X., Wang, L., Zhang, A., Xia, T., Dong, H., Li, X., & Zhang, L. (2009). Progress of electrochemical capacitor electrode materials: a review. International Journal of Hydrogen Energy, 34, 4889–4899. DOI: 10.1016/j.ijhydene.2009.04.005.CrossRefGoogle Scholar
  46. Zhang, L. L., & Zhao, X. S. (2009). Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 38, 2520–2531. DOI: 10.1039/b813846j7.CrossRefGoogle Scholar
  47. Zheng, J. P., & Jow, T. R. (1995). A new charge storage mechanism for electrochemical capacitors. Journal of The Electrochemical Society, 142, L6–L8. DOI: 10.1149/1.2043984.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2013

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Arts and ScienceEskişehir Osmangazi UniversityEskişehirTurkey

Personalised recommendations