Skip to main content

Advertisement

Log in

Electrochemical storage properties of polyaniline-, poly(N-methylaniline)-, and poly(N-ethylaniline)-coated pencil graphite electrodes

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Three types of conducting polymers, polyaniline (PANI), poly(N-methylaniline) (PNMA), poly(N-ethylaniline) (PNEA) were electrochemically deposited on pencil graphite electrode (PGE) surfaces characterized as electrode active materials for supercapacitor applications. The obtained films were electrochemically characterized using different electrochemical methods. Redox parameters, electro-active characteristics, and electrostability of the polymer films were investigated via cyclic voltammetry (CV). Doping types of the polymer films were determined by the Mott-Schottky method. Electrochemical capacitance properties of the polymer film coating PGE (PGE/PANI, PGE/PNMA, and PGE/PNEA) were investigated by the CV and potentiostatic electrochemical impedance spectroscopy (EIS) methods in a 0.1 M H2SO4 aqueous solution. Thus, capacitance values of the electrodes were calculated. Results show that PGE/PANI, PGE/PNMA, and PGE/PNEA exhibit maximum specific capacitances of 131.78 F g−1 (≈ 436.50 mF cm−2), 38.00 F g−1 (≈ 130.70 mF cm−2), and 16.50 F g−1 (≈ 57.83 mF cm−2), respectively. Moreover, charge-discharge capacities of the electrodes are reported and the specific power (SP) and specific energy (SE) values of the electrodes as supercapacitor materials were calculated using repeating chronopotentiometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arslan, A., & Hür, E. (2012). Supercapacitor applications of polyaniline and poly(N-methylaniline) coated pencil graphite electrode. International Journal of Electrochemical Science, 7, 12558–12572.

    CAS  Google Scholar 

  • Bereket, G., Hür, E., & Şahin, Y. (2005). Electrodeposition of polyaniline, poly(2-iodoaniline), and poly(aniline co-2-iodoaniline) on steel surfaces and corrosion protection of steel. Applied Surface Science, 252, 1233–1244. DOI: 10.1016/j.apsusc.2005.02.087.

    Article  CAS  Google Scholar 

  • Bian, C. Q., & Yu, A. S. (2010). De-doped polyaniline nanofibres with micropores for high-rate aqueous electrochemical capacitor. Synthetic Metals, 160, 1579–1583. DOI: 10.1016/j.synthmet.2010.04.019.

    Article  CAS  Google Scholar 

  • Bondarenko, A. S., & Ragoisha, G. A. (2005). Variable Mott-Schottky plots acquisition by potentiodynamic electrochemical impedance spectroscopy. Journal of Solid State Electrochemistry, 9, 845–849. DOI: 10.1007/s10008-005-0025-7.

    Article  CAS  Google Scholar 

  • Burke, A. (2002). Ultracapacitors: why, how, and where is the technology. Journal of Power Sources, 91, 37–50. DOI: 10.1016/s0378-7753(00)00485-7.

    Article  Google Scholar 

  • Chen, W. C., Wen, T. C., & Teng, H. S. (2003). Polyanilinedeposited porous carbon electrode for supercapacitor. Electrochimica Acta, 48, 641–649. DOI: 10.1016/s0013-4686(02) 00734-x.

    Article  CAS  Google Scholar 

  • Deshpande, P. P., Murali, M., Deshpande, P. P., Galphade, V. S., & More, M. A. (2013). Conducting poly(o-anisidine)-coated steel electrodes for supercapacitors. Chemical Papers, 67, 1066–1071. DOI: 10.2478/a11696-013-0317-9.

    Article  CAS  Google Scholar 

  • Dhawale, D. S., Vinu, A., & Lokhande, C. D. (2011). Stable nanostructured polyaniline electrode for supercapacitor application. Electrochimica Acta, 56, 9482–9487. DOI: 10.1016/j.electacta.2011.08.042.

    Article  CAS  Google Scholar 

  • Dubal, D. P., Kim, W. B., & Lokhande, C. D. (2012). Galvanostatically deposited Fe: MnO2 electrodes for supercapacitor application. Journal of Physics and Chemistry of Solids, 73, 18–24. DOI: 10.1016/j.jpcs.2011.09.005.

    Article  CAS  Google Scholar 

  • Duran, B., Bereket, G., Turhan, M. C., & Virtanen, S. (2011). Poly(N-methyl aniline) thin films on copper: Synthesis, characterization and corrosion protection. Thin Solid Films, 519, 5868–5874. DOI: 10.1016/j.tsf.2011.02.084.

    Article  CAS  Google Scholar 

  • Faye, A., Dione, G., Dieng, M. M., Aaron, J. J., Cachet, H., & Cachet, C. (2010). Usefulness of a composite electrode with a carbon surface modified by electrosynthesized polypyrrole for supercapacitor applications. Journal of Applied Electrochemistry, 40, 1925–1931. DOI: 10.1007/s10800-010-0153-3.

    Article  CAS  Google Scholar 

  • Feng, G. L., Xiong, Y., Wang, H., & Yang, Y. J. (2008). Cyclic voltammetry investigation of diffusion of ferrocene within propylene carbonate organogel formed by gelator. Electrochimica Acta, 53, 8253–8257. DOI: 10.1016/j.electacta.2008.06.048.

    Article  CAS  Google Scholar 

  • Frackowiak, E., & Béguin, F. (2001). Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 39, 937–950. DOI: 10.1016/s0008-6223(00)00183-4.

    Article  CAS  Google Scholar 

  • Gujar, T. P., Kim, W. Y., Puspitasari, I., Jung, K. D., & Joo, O. S. (2007). Electrochemically deposited nanograin ruthenium oxide as a pseudocapacitive electrode. International Journal of Electrochemical Science, 2, 666–673.

    CAS  Google Scholar 

  • Gupta, V., & Miura, N. (2005). Electrochemically deposited polyaniline nanowire’s network: A high-performance electrode material for redox supercapacitor. Electrochemical and Solid-State Letters, 8, A630–A632. DOI: 10.1149/1.2087207.

    Article  CAS  Google Scholar 

  • Hou, Y., Cheng, Y. W., Hobson, T., & Liu, J. (2010). Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Letters, 10, 2727–2733. DOI: 10.1021/nl101723g.

    Article  CAS  Google Scholar 

  • Hu, Y., Zhu, H.W., Wang, J., & Chen, Z. X. (2011). Synthesis of layered birnessite-type manganese oxide thin films on plastic substrates by chemical bath deposition for flexible transparent supercapacitors. Journal of Alloys and Compounds, 509, 10234–10240. DOI: 10.1016/j.jallcom.2011.08.080.

    Article  CAS  Google Scholar 

  • Jiang, J. H., & Kucernak, A. (2002). Electrochemical supercapacitor material based on manganese oxide: preparation and characterization. Electrochimica Acta, 47, 2381–2386. DOI: 10.1016/s0013-4686(02)00031-2.

    Article  CAS  Google Scholar 

  • Jurewicz, K., Delpeux, S., Bertagna, V., Béguin, F., & Frackowiak, E. (2001). Supercapacitors from nanotubes/polypyrrole composites. Chemical Physics Letters, 347, 36–40. DOI: 10.1016/s0009-2614(01)01037-5.

    Article  CAS  Google Scholar 

  • Kim, J. H., Lee, Y. S., Sharma, A. K., & Liu, C. G. (2006). Polypyrrole/carbon composite electrode for high-power electrochemical capacitors. Electrochimica Acta, 52, 1727–1732. DOI: 10.1016/j.electacta.2006.02.059.

    Article  CAS  Google Scholar 

  • Kötz, R., & Carlen, M. (2000). Principles and applications of electrochemical capacitors. Electrochimica Acta, 45, 2483–2498. DOI: 10.1016/s0013-4686(00)00354-6.

    Article  Google Scholar 

  • Levine, K. L., Tallman, D. E., & Bierwagen, G. P. (2008). Mott-Schottky analysis of aluminium oxide formed in the presence of different mediators on the surface of aluminium alloy 2024-T3. Journal of Materials Processing Technology, 199, 321–326. DOI: 10.1016/j.jmatprotec.2007.08.023.

    Article  CAS  Google Scholar 

  • Lewandowski, A., Zajder, M., Frąckowiak, E., & Béguin, F. (2001). Supercapacitor based on activated carbon and polyethylene oxide-KOH-H2O polymer electrolyte. Electrochimica Acta, 46, 2777–2780. DOI: 10.1016/s0013-4686 (01)00496-0.

    Article  CAS  Google Scholar 

  • Li, Y., Zheng, J. L., Feng, J., & Jing, X. L. (2013). Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration. Chemical Papers, 67, 876–890. DOI: 10.2478/a11696-013-0347-3.

    Article  CAS  Google Scholar 

  • Liu, X. J., & Osaka, T. (1996). All-solid-state electric doublelayer capacitor with isotropic high-density graphite electrode and polyethylene oxide/LiClO4 polymer electrolyte. Journal of The Electrochemical Society, 143, 3982–3986. DOI: 10.1149/1.1837324.

    Article  CAS  Google Scholar 

  • Mastragostino, M., Arbizzani, C., & Soavi, F. (2001). Polymerbased supercapacitors. Journal of Power Sources, 97–98, 812–815. DOI: 10.1016/s0378-7753(01)00613-9.

    Article  Google Scholar 

  • Mozota, J., & Conway, B. E. (1983). Surface and bulk processes at oxidized iridium electrodes-I. Monolayer stage and transition to reversible multilayer oxide film behavior. Electrochimica Acta, 28, 1–8. DOI: 10.1016/0013-4686(83)85079-8.

    Article  CAS  Google Scholar 

  • Muthulakshmi, B., Kalpana, D., Pitchumani, S., & Renganathan, N. G. (2006). Electrochemical deposition of polypyrrole for symmetric supercapacitors. Journal of Power Sources, 158, 1533–1537. DOI: 10.1016/j.jpowsour.2005.10.013.

    Article  CAS  Google Scholar 

  • Patil, U. M., Kulkarni, S. B., Jamadade, V. S., & Lokhande, C. D. (2011). Chemically synthesized hydrous RuO2 thin films for supercapacitor application. Journal of Alloys and Compounds, 509, 1677–1682. DOI: 10.1016/j.jallcom.2010.09.133.

    Article  CAS  Google Scholar 

  • Pournaghi-Azar, M. H., & Habibi, B. (2007). Electropolymerization of aniline in acid media on the bare and chemically pre-treated aluminum electrodes: A comparative characterization of the polyaniline deposited electrodes. Electrochimica Acta, 52, 4222–4230. DOI: 10.1016/j.electacta.2006.11.050.

    Article  CAS  Google Scholar 

  • Rios, E. C., Rosario, A. V., Mello, R. M. Q., & Micaroni, L. (2007). Poly(3-metylthiophene)/MnO2 composite electrode as electrochemical capacitors. Journal of Power Sources, 163, 1137–1142. DOI: 10.1016/j.jpowsour.2006.09.056.

    Article  CAS  Google Scholar 

  • Ryu, K. S., Kee, Y. G., Kim, K. M., Park, Y. J., Hong, Y. S., Wu, X. L., Kang, M. G., Park, N. G., Song, R. Y., & Ko, J. M. (2005). Electrochemical capacitor with chemically polymerized conducting polymer based on activated carbon as hybrid electrodes. Synthetic Metals, 153, 89–92. DOI: 10.1016/j.synthmet.2005.07.167.

    Article  CAS  Google Scholar 

  • Saraç, A. S., Doğru, E., Ateş, M., & Parlak, E. A. (2006). Electrochemical synthesis of N-methylpyrrole and N-methylcarbazole copolymer on carbon fiber microelectrodes, and their characterization. Turkish Journal of Chemistry, 30, 401–418

    Google Scholar 

  • Shadi, L., Gheybi, H., Entezami, A. A., & Safa, K. D. (2012). Synthesis and characterization of N- and O-alkylated poly[aniline-co-N-(2-hydroxyethyl) aniline]. Journal of Applied Polymer Science, 124, 2118–2126. DOI: 10.1002/app.35218.

    Article  CAS  Google Scholar 

  • Simon, P., & Gogotsi, Y. (2008). Materials for electrochemical capacitors. Nature Materials, 7, 845–854. DOI: 10.1038/nmat2297.

    Article  CAS  Google Scholar 

  • Sivakkumar, S. R., & Saraswathi R. (2004). Performance evaluation of poly(N-methylaniline) and polyisothianaphthene in charge-storage devices. Journal of Power Sources, 137, 322–328. DOI: 10.1016/j.jpowsour.2004.05.060.

    Article  CAS  Google Scholar 

  • Snook, G. A., Kao, P., & Best, A. S. (2011). Conductingpolymer-based supercapacitor devices and electrodes. Journal of Power Sources, 196, 1–12. DOI: 10.1016/j.jpowsour.2010.06.084.

    Article  CAS  Google Scholar 

  • Sutar, D., Menon, R., & Subramanyam, S. V. (2002). Study of electrical conduction in polypyrrole by varying the doping level. Thin Solid Films, 417, 40–42. DOI: 10.1016/s0040-6090(02)00649-1.

    Article  CAS  Google Scholar 

  • Tripathi, S. K., Kumar, A., & Hashmi, S. A. (2006). Electrochemical redox supercapacitors using PVdF-HFP based gel electrolytes and polypyrrole as conducting polymer electrode. Solid State Ionics, 177, 2979–2985. DOI: 10.1016/j.ssi.2006.03.059.

    Article  CAS  Google Scholar 

  • Wahdame, B., Candusso, D., François, X., Harel, F., Kauffmann, J. M., & Coquery, G. (2009). Design of experiment techniques for fuel cell characterization and development. International Journal of Hydrogen Energy, 34, 967–980. DOI: 10.1016/j.ijhydene.2008.10.066.

    Article  CAS  Google Scholar 

  • Wang, J., Xu, Y. L., Chen, X., & Du, X. F. (2007a). Electrochemical supercapacitor electrode material based on poly(3,4-ethylenedioxythiophene)/polypyrrole composite. Journal of Power Sources, 163, 1120–1125. DOI: 10.1016/j.jpowsour.2006.10.004.

    Article  CAS  Google Scholar 

  • Wang, J., Xu, Y. L, Chen, X., & Sun, X. F. (2007b). Capacitance properties of single wall carbon nanotube/polypyrrole composite films. Composites Science and Technology, 67, 2981–2985. DOI: 10.1016/j.compscitech.2007.05.015.

    Article  CAS  Google Scholar 

  • Wu, M. S., Huang, Y. A., Yang, C. H., & Jow, J. J. (2007). Electrodeposition of nanoporous nickel oxide film for electrochemical capacitors. International Journal of Hydrogen Energy, 32, 4153–4159. DOI: 10.1016/j.ijhydene.2007.06.001.

    Article  CAS  Google Scholar 

  • Xu, H. L., Cao, Q., Wang, X. Y., Li, W. J., Li, X. Y., & Deng, H. Y. (2010). Properties and chemical oxidation polymerization of polyaniline/neutral red/TiO2 composite electrodes. Materials Science and Engineering: B, 171, 104–108. DOI: 10.1016/j.mseb.2010.03.081.

    Article  CAS  Google Scholar 

  • Zhang, Y., Feng, H., Wu, X., Wang, L., Zhang, A., Xia, T., Dong, H., Li, X., & Zhang, L. (2009). Progress of electrochemical capacitor electrode materials: a review. International Journal of Hydrogen Energy, 34, 4889–4899. DOI: 10.1016/j.ijhydene.2009.04.005.

    Article  CAS  Google Scholar 

  • Zhang, L. L., & Zhao, X. S. (2009). Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 38, 2520–2531. DOI: 10.1039/b813846j7.

    Article  CAS  Google Scholar 

  • Zheng, J. P., & Jow, T. R. (1995). A new charge storage mechanism for electrochemical capacitors. Journal of The Electrochemical Society, 142, L6–L8. DOI: 10.1149/1.2043984.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evrim Hur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arslan, A., Hur, E. Electrochemical storage properties of polyaniline-, poly(N-methylaniline)-, and poly(N-ethylaniline)-coated pencil graphite electrodes. Chem. Pap. 68, 504–515 (2014). https://doi.org/10.2478/s11696-013-0475-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0475-9

Keywords

Navigation