Chemical Papers

, Volume 68, Issue 4, pp 564–574 | Cite as

Role of thermoxidation and depolymerisation in the ageing of systems paper/gum arabic/historical ink

  • András Peller
  • Milena Reháková
  • Michaela Ciglanská
  • Peter Šimon
Original Paper


The aim of this study was to assess the role and proportional representation of depolymerisation and thermoxidation reaction paths in the systems paper/gum arabic (GA)/historical ink during various accelerated ageing methods. The historical inks under study are iron-gall, bistre, and sepia. The results indicate that thermoxidation represents only a minor reaction path in the ageing of paper/GA/ink systems except for the iron-gall ink and the light-thermal method of accelerated ageing. The iron-gall ink accelerates both reaction paths of ageing, i.e. thermoxidation and depolymerisation; in this case, thermoxidation might become the prevailing degradation reaction path. For the sepia ink, an anti-depolymerisation stabilising effect in thermal methods of ageing has been detected. Considering the thermoxidation reaction path, the results even suggest that a compound preventing thermoxidation is formed during the thermally accelerated ageing in air and in 100 mg L−1 of NO2. In the light-thermal ageing, the most stable sample is the Whatman paper (W)/GA/bistre ink.


thermoxidation depolymerisation cellulose ink stability accelerated ageing non-Arrhenian temperature function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ASTM International (2007). Standard test method for folding endurance of paper by the M.I.T. tester. ASTM D2176-97a. West Conshohocken, PA, USA: ASTM International.Google Scholar
  2. Brunelle, R. L., & Reed, R. W. (1984). Forensic examination of ink and paper (pp. 9–42). Springfield, IL, USA: Charles C. Thomas Publisher.Google Scholar
  3. Budrugeac, P. (2001). Lifetime prediction for polymers via the temperature of initial decomposition. Journal of Thermal Analysis and Calorimetry, 65, 309–312. DOI: 10.1023/a:1011569827970.CrossRefGoogle Scholar
  4. Camuffo, D., Fassina, V., & Havermans, J. (Eds.) (2010). Basic environmental mechanisms affecting cultural heritage: Understanding deterioration mechanisms for conservation purposes (Cost Action D42: Chemical interactions between cultural artefacts and indoor environment (EnviArt)). Firenze, Italy: Nardini Editore.Google Scholar
  5. Čeppan, M., Jančovičová, V., Reháková, M., & Buzinkay, A. (2008). Kinetic of degradation of historical documents containing iron-gall inks. Chemické Listy, 102, s989–s991.Google Scholar
  6. Cibulková, Z., Šimon, P., Lehocký, P., & Balko, J. (2005). Antioxidant activity of p-phenylenediamines studied by DSC. Polymer Degradation and Stability, 87, 479–486. DOI: 10.1016/j.polymdegradstab.2004.10.004.CrossRefGoogle Scholar
  7. Emsley, A. M., Heywood, R. J., Ali, M., & Eley, C. M. (1997). On the kinetics of degradation of cellulose. Cellulose, 4, 1–5. DOI: 10.1023/a:1018408515574.CrossRefGoogle Scholar
  8. Evans, R., & Wallis, A. F. A. (1987). Comparison of cellulose molecular weight determined by HPSEC and viscometry. In Proceedings of the 4th International Symposium on Wood, Fibre and Pulping Chemistry, April 27–30, 1987 (pp. 201–205). Paris, France: Eucepa.Google Scholar
  9. Faubel, W., Staub, S., Simon, R., Heissler, S., Pataki, A., & Banik, G. (2007). Non-destructive analysis for the investigation of decomposition phenomena of historical manuscripts and prints. Spectrochimica Acta Part B: Atomic Spectroscopy, 62, 669–676. DOI: 10.1016/j.sab.2007.03.029.CrossRefGoogle Scholar
  10. Franceschi, E., Palazzi, D., & Pedemonte, E. (2001). Thermoanalytical contribution to the study on paper degradation. Characterisation of oxidised paper. Journal of Thermal Analysis and Calorimetry, 66, 349–358. DOI: 10.1023/a:1012428824378.CrossRefGoogle Scholar
  11. Fratričová, M., Šimon, P., Schwarzer, P., & Wilde, H.W. (2006). Residual stability of polyurethane automotive coatings measured by chemiluminescence and equivalence of Xenotest and Solisi ageing tests. Polymer Degradation and Stability, 91, 94–100. DOI: 10.1016/j.polymdegradstab.2005.04.025.CrossRefGoogle Scholar
  12. Gambaro, A., Ganzerla, R., Fantin, M., Cappelletto, E., Piazza, R., & Cairns, W. R. L. (2009). Study of 19th century inks from archives in the Palazzo Ducale (Venice, Italy) using various analytical techniques. Microchemical Journal, 91, 202–208. DOI: 10.1016/j.microc.2008.11.002.CrossRefGoogle Scholar
  13. Giorgi, R., Dei, L., Ceccato, M., Schettino, C., & Baglioni, P. (2002). Nanotechnologies for conservation of cultural heritage: Paper and canvas deacidification. Langmuir, 18, 8198–8203. DOI: 10.1021/la025964d.CrossRefGoogle Scholar
  14. Havlínová, B., Katuščák, S., Petrovičová, M., Maková, A., & Brezová, V. (2009). A study of mechanical properties of papers exposed to various methods of accelerated ageing. Part I. The effect of heat and humidity on original woodpulp papers. Journal of Cultural Heritage, 10, 222–231. DOI: 10.1016/j.culher.2008.07.009.CrossRefGoogle Scholar
  15. Hong, L., & Simon, J. D. (2006). Insight into the binding of divalent cations to sepia eumelanin from IR absorption spectroscopy. Photochemistry and Photobiology, 82, 1265–1269. DOI: 10.1562/2006-02-23-ra-809.CrossRefGoogle Scholar
  16. ISO (1981). Cellulose in dilute solutions — Determination of limiting viscosity number — Part 1: Method in cupriethylenediamine (CED) solution. ISO 5351-1: 1981. Geneva, Switzerland: International Organization for Standardization.Google Scholar
  17. ISO (1988). Textiles — Tests for colour fastness — Part B02: Colour fastness to artificial light: Xenon arc fading lamp test. ISO 105-B02: 1988. Geneva, Switzerland: International Organization for Standardization.Google Scholar
  18. ISO (2008). Paper and board — Accelerated ageing — Part 5: Exposure to elevated temperature at 100°C. ISO 5630-5: 2008. Geneva, Switzerland: International Organization for Standardization.Google Scholar
  19. Kačík, F., Geffertová, J., & Kačíková, D. (2009). Characterisation of cellulose and pulp by the methods of gel permeation chromatography and viscometry. Acta Facultatis Xylologiae, 51, 93–103. (in Slovak)Google Scholar
  20. Kanngießer, B., Hahn, O., Wilke, M., Nekat, B., Malzer, W., & Erko, A. (2004). Investigation of oxidation and migration processes of inorganic compounds in ink-corroded manuscripts. Spectrochimica Acta Part B: Atomic Spectroscopy, 59, 1511–1516. DOI: 10.1016/j.sab.2004.07.013.CrossRefGoogle Scholar
  21. Keheyan, Y., Eliazyan, G., Engel, P., & Rittmeier, B. (2009). Py/GC/MS characterisation of naturally and artificially aged inks and papers. Journal of Analytical and Applied Pyrolysis, 86, 192–199. DOI: 10.1016/j.jaap.2009.06.004.CrossRefGoogle Scholar
  22. Kolar, J., & Strlič, M. (2004). Evaluating the effects of treatments on iron gall ink corroded documents. A new analytical methodology. Restaurator, 25, 94–103. DOI: 10.1515/rest.2004.94.Google Scholar
  23. Kolar, J., Štolfa, A., Strlič, M., Pompe, M., Pihlar, B., Budnar, M., Simčič, J., & Reissland, B. (2006a). Historical iron gall ink containing documents-Properties affecting their condition. Analytica Chimica Acta, 555, 167–174. DOI: 10.1016/j.aca.2005.08.073.CrossRefGoogle Scholar
  24. Kolar, J., Strlič, M., & Pihlar, B. (2006b). Methodology and analytical techniques in studies of iron gall ink and its corrosion. In J. Kolar, & M. Strlič (Eds.), Iron gall inks: On manufacture, characterisation, degradation and stabilization (pp. 95–118). Ljubljana, Slovenia: National and University Library.Google Scholar
  25. Kolar, J., & Strlič, M. (Eds.) (2006). Iron gall inks: On manufacture, characterisation, degradation and stabilisation. Ljubljana, Slovenia: National and University Library.Google Scholar
  26. López-Montes, A., Blanc, R., Espejo, T., Navalón, A., & Vílchez, J. L. (2009). Characterization of sepia ink in ancient graphic documents by capillary electrophoresis. Microchemical Journal, 93, 121–126. DOI: 10.1016/j.microc.2009.05.008.CrossRefGoogle Scholar
  27. Malešič, J., Kočar, D., & Balažic Fabjan, A. (2012). Stabilization of copper- and iron-containing papers in mildly alkaline environment. Polymer Degradation and Stability, 97, 118–123. DOI: 10.1016/j.polymdegradstab.2011.09.025.CrossRefGoogle Scholar
  28. Neevel, J. G. (2006). The develpoment of in-situ methods for identification of iron gall inks. In J. Kolar, & M. Strlič (Eds.), Iron gall inks: On manufacture, characterisation, degradation and stabilisation (pp. 147–172). Ljubljana, Slovenia: National and University Library.Google Scholar
  29. Neifar, A., Ben Rebah, F., Gargouri, A., & Abdelmouleh, A. (2009). Physicochemical characterization of Sepia officinalis ink and the effects of storage conditions on the coagulation process. Journal of The Marine Biological Association of The United Kingdom, 89, 803–807. DOI: 10.1017/s0025315408002798.CrossRefGoogle Scholar
  30. Reissland, B. (1999). Ink corrosion aqueous and non-aqueous treatment of paper objects — state of the art. Restaurator, 20, 167–180. DOI: 10.1515/rest.1999.20.3-4.167.CrossRefGoogle Scholar
  31. Remazeilles, C., Rouchon-Quillet, V., & Bernard, J. (2004). In-fluence of gum arabic on iron gall ink corrosion. Part I: A laboratory samples study. Restaurator, 25, 220–232. DOI: 10.1515/rest.2004.220.CrossRefGoogle Scholar
  32. Remazeilles, C., Rouchon-Quillet, V., Bernard, J., Calligaro, T., Dran, C. J., Pichon, L., Salomon, J., & Eveno, M. (2005). Influence of gum arabic on iron-gall ink corrosion. Part II: Observation and elemental analysis of originals. Restaurator, 26, 118–133.Google Scholar
  33. Rouchon-Quillet, V., Remazeilles, C., Nguyen, T. P., Bleton, J., & Tchapla, A. (2004). The impact of gum Arabic on iron gall ink corrosion. In J. Kolar, M. Strlic, & J. Havermans (Eds.), Proceedings of the International Conference Durability of Paper and Writing, November 16–19, 2004 (pp. 56–58). Ljubljana, Slovenia: National and University Library.Google Scholar
  34. Senvaitiene, J., Beganskiene, A., & Kareiva, A. (2005). Spectroscopic evaluation and characterization of different historical writing inks. Vibrational Spectroscopy, 37, 61–67. DOI: 10.1016/j.vibspec.2004.06.004.CrossRefGoogle Scholar
  35. Šimon, P. (2006). Induction periods. Theory and applications. Journal of Thermal Analysis and Calorimetry, 84, 263–270. DOI: 10.1007/s10973-005-7204-z.CrossRefGoogle Scholar
  36. Šimon, P., Hynek, D., Malíková, M., & Cibulková, Z. (2008). Extrapolation of accelerated thermooxidative tests to lower temperatures applying non-Arrhenius temperature functions. Journal of Thermal Analysis and Calorimetry, 93, 817–821. DOI: 10.1007/s10973-008-9328-0.CrossRefGoogle Scholar
  37. Šimon, P. (2009). Material stability predictions applying a new non-Arrhenian temperature function. Journal of Thermal Analysis and Calorimetry, 97, 391–396. DOI: 10.1007/s10973-008-9627-5.CrossRefGoogle Scholar
  38. Sivakova, B., Beganskiené, A., & Kareiva, A. (2008). Investigation of damaged paper by ink corrosion. Materials Science (MedŽiagotyra), 14, 51–54.Google Scholar
  39. Strlič, M., Kolar, J., Žigon, M., & Pihlar, B. (1998). Evaluation of size-exclusion chromatography and viscometry for the determination of molecular masses of oxidised cellulose. Journal of Chromatography A, 805, 93–99. DOI: 10.1016/s0021-9673(98)00008-9.CrossRefGoogle Scholar
  40. Tomasini, E. P., Halac, E. B., Reinoso, M., Di Liscia, E. J., & Maier, M. S. (2012). Micro-Raman spectroscopy of carbonbased black pigments. Journal of Raman Spectroscopy, 43, 1671–1675. DOI: 10.1002/jrs.4159.CrossRefGoogle Scholar
  41. Ursescu, M., Măluan, T., & Ciovică, S. (2009). Iron gall inks influence on papers’ thermal degradation. FTIR spectroscopy applications. European Journal of Science and Theology, 5, 71–84.Google Scholar
  42. Vizárová, K., Reháková, M., Kirschnerová, S., Peller, A., Šimon P., & Mikulášik, R. (2011). Stability studies of materials applied in the restoration of a baroque oil painting. Journal of Cultural Heritage, 12, 190–195. DOI: 10.1016/j.culher.2011.01.001.CrossRefGoogle Scholar
  43. Vizárová, K., Kirschnerová, S., Kačík, F., Briškárová, A., Šutý, Š., & Katuščák, S. (2012). Relationship between the decrease of degree of polymerisation of cellulose and the loss of groundwood pulp paper mechanical properties during accelerated ageing. Chemical Papers, 66, 1124–1129. DOI: 10.2478/s11696-012-0236-1.CrossRefGoogle Scholar
  44. Winter, J., & FitzHugh, E. W. (2007). Pigments based on carbon. In B. H. Berrie (Ed.), Artists’ pigments (Vol. 4, pp. 1–37). Washington, DC, USA/London, UK: National Gallery of Art/Archetype.Google Scholar
  45. Zervos, S. (2010). Natural and accelerated ageing of cellulose and paper: A literature review. In A. Lejeune, & T. Deprez (Eds.), Cellulose: Structure and properties, derivatives and industrial uses (pp. 155–203). Hauppauge, NY, USA: Nova Science Publishers.Google Scholar
  46. Zou, X., Uesaka, T., & Gurnagul, N. (1996). Prediction of paper permanence by accelerated ageing. I. Kinetic analysis of the ageing process. Cellulose, 3, 243–267. DOI: 10.1007/bf02228805.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2013

Authors and Affiliations

  • András Peller
    • 1
  • Milena Reháková
    • 2
  • Michaela Ciglanská
    • 2
  • Peter Šimon
    • 1
  1. 1.Institute of Physical Chemistry and Chemical PhysicsSlovak University of Technology in Bratislava, Faculty of Chemical and Food TechnologyBratislavaSlovakia
  2. 2.Institute of Polymer MaterialsSlovak University of Technology in Bratislava, Faculty of Chemical and Food TechnologyBratislavaSlovakia

Personalised recommendations