Chemical Papers

, Volume 68, Issue 9, pp 1154–1168 | Cite as

Diesel soot combustion catalysts: review of active phases

  • Ana M. Hernández-Giménez
  • Dolores Lozano Castelló
  • Agustín Bueno-López
Review

Abstract

The most relevant information about the different active phases that have been studied for the catalytic combustion of soot is reviewed and discussed in this article. Many catalysts have been reported to accelerate soot combustion, including formulations with noble metals, alkaline metals and alkaline earth metals, transition metals that can accomplish redox cycles (V, Mn, Co, Cu, Fe, etc.), and internal transition metals. Platinum catalysts are among those of most interest for practical applications, and an important feature of these catalysts is that sulphur-resistant platinum formulations have been prepared. Some metal oxide-based catalysts also appear to be promising candidates for soot combustion in practical applications, including ceria-based formulations and mixed oxides with perovskite and spinel structures. Some of these metal oxide catalysts produce highly reactive active oxygen species that promote efficient soot combustion. Thermal stability is an important requirement for a soot combustion catalyst, which precludes the practical utilisation of several potential catalysts such as most alkaline metal catalysts, molten salts, and metal chlorides. Some noble metal catalysts are also unstable due to the formation of volatile oxides (ruthenium, iridium, and osmium).

Keywords

diesel soot DPF DOC soot combustion catalyst Pt catalyst ceria perovskite 

References

  1. An, H. M., Kilroy, C., & McGinn, P. J. (2004). Combinatorial synthesis and characterization of alkali metal doped oxides for diesel soot combustion. Catalysis Today, 98, 423–429. DOI: 10.1016/j.cattod.2004.08.006.Google Scholar
  2. An, H. M., & McGinn, P. J. (2006). Catalytic behavior of potassium containing compounds for diesel soot combustion. Applied Catalysis B: Environmental, 62, 46–56. DOI: 10.1016/j.apcatb.2005.06.013.Google Scholar
  3. Aneggi, E., de Leitenburg, C., Dolcetti, G., & Trovarelli, A. (2006). Promotional effect of rare earths and transition metals in the combustion of diesel soot over CeO2 and CeO2-ZrO2. Catalysis Today, 114, 40–47. DOI: 10.1016/j.cattod. 2006.02.008.Google Scholar
  4. Aneggi, E., de Leitenburg, C., Dolcetti, G., & Trovarelli, A. (2008). Diesel soot combustion activity of ceria promoted with alkali metals. Catalysis Today, 136, 3–10. DOI: 10.1016/j.cattod.2008.01.002.Google Scholar
  5. Aneggi, E., Llorca, J., de Leitenburg, C., Dolcetti, G., & Trovarelli, A. (2009). Soot combustion over silver-supported catalysts. Applied Catalysis B: Environmental, 91, 489–498. DOI: 10.1016/j.apcatb.2009.06.019.Google Scholar
  6. Aneggi, E., de Leitenburg, C., Llorca, J., & Trovarelli, A. (2012). Higher activity of Diesel soot oxidation over polycrystalline ceria and ceria-zirconia solid solutions from more reactive surface planes. Catalysis Today, 197, 119–126. DOI: 10.1016/j.cattod.2012.07.030.Google Scholar
  7. Atribak, I., Such-Basáñez, I., Bueno-López, A., & García, A. (2007). Comparison of the catalytic activity of MO2 (M = Ti, Zr, Ce) for soot oxidation under NOx/O2. Journal of Catalysis, 250, 75–84. DOI: 10.1016/j.jcat.2007.05.015.Google Scholar
  8. Atribak, I., Bueno-López, A., & García-García, A. (2008a). Thermally stable ceria-zirconia catalysts for soot oxidation by O2. Catalysis Communications, 9, 250–255. DOI: 10.1016/j.catcom.2007.05.047.Google Scholar
  9. Atribak, I., Bueno-López, A., & García-García, A. (2008b). Combined removal of diesel soot particulates and NOx over CeO2-ZrO2 mixed oxides. Journal of Catalysis, 259, 123–132. DOI: 10.1016/j.jcat.2008.07.016.Google Scholar
  10. Atribak, I., Azambre, B., Bueno López, A., & García-García, A. (2009). Effect of NOx adsorption/desorption over ceriazirconia catalysts on the catalytic combustion of model soot. Applied Catalysis B: Environmental, 92, 126–137. DOI: 10.1016/j.apcatb.2009.07.015.Google Scholar
  11. Białobok, B., Trawczyński, J., Rzadki, T., Miśta, W., & Zawadzki, M. (2007). Catalytic combustion of soot over alkali doped SrTiO3. Catalysis Today, 119, 278–285. DOI: 10.1016/j.cattod.2006.08.024.Google Scholar
  12. Bueno-López, A., Krishna, K., Makkee, M., & Moulijn, J. A. (2005). Enhanced soot oxidation by lattice oxygen via La3+-doped CeO2. Journal of Catalysis, 230, 237–248. DOI: 10.1016/j.jcat.2004.11.027.Google Scholar
  13. Castoldi, L., Matarrese, R., Lietti, L., & Forzatti, P. (2006). Simultaneous removal of NOx and soot on Pt-Ba/Al2O3 NSR catalysts. Applied Catalysis B: Environmental, 64, 25–34. DOI: 10.1016/j.apcatb.2005.10.015.Google Scholar
  14. Cousin, R., Capelle, S., Abi-Aad, E., Courcot, D., & Aboukaïs, A. (2007). Copper-vanadium-cerium oxide catalysts for carbon black oxidation. Applied Catalysis B: Environmental, 70, 247–253. DOI: 10.1016/j.apcatb.2006.01.019.Google Scholar
  15. de Sousa Filho, P. C., Gomes, L. F., de Oliveira, K. T., Neri, C. R., & Serra, O. A. (2009). Amphiphilic cerium(III) β-diketonate as a catalyst for reducing diesel/biodiesel soot emissions. Applied Catalysis A: General, 360, 210–217. DOI: 10.1016/j.apcata.2009.03.024.Google Scholar
  16. Fino, D., Fino, P., Saracco, G., & Specchia, V. (2003a). Studies on kinetics and reactions mechanism of La2−xKxCu1−yVyO4 layered perovskites for the combined removal of diesel particulate and NOx. Applied Catalysis B: Environmental, 43, 243–259. DOI: 10.1016/s0926-3373(02)00311-9.Google Scholar
  17. Fino, D., Russo, N., Saracco, G., & Specchia, V. (2003b). The role of suprafacial oxygen in some perovskites for the catalytic combustion of soot. Journal of Catalysis, 217, 367–375. DOI: 10.1016/s0021-9517(03)00143-x.Google Scholar
  18. Fino, D., & Specchia, V. (2004). Compositional and structural optimal design of a nanostructured diesel-soot combustion catalyst for a fast-regenerating trap. Chemical Engineering Science, 59, 4825–4831. DOI: 10.1016/j.ces.2004.07.012.Google Scholar
  19. Fino, D., Russo, N., Cauda, E., Saracco, G., & Specchia, V. (2006a). La-Li-Cr perovskite catalysts for diesel particulate combustion. Catalysis Today, 114, 31–39. DOI: 10.1016/j.cattod.2006.02.007.Google Scholar
  20. Fino, D., Russo, N., Saracco, G., & Specchia, V. (2006b). Catalytic removal of NOx and diesel soot over nanostructured spinel-type oxides. Journal of Catalysis, 242, 38–47. DOI: 10.1016/j.jcat.2006.05.023.Google Scholar
  21. Fino, D., & Specchia, V. (2008). Open issues in oxidative catalysis for diesel particulate abatement. Powder Technology, 180, 64–73. DOI: 10.1016/j.powtec.2007.03.021.Google Scholar
  22. Gallagher, J. T., & Harker, H. (1964). Reaction of carbon with oxidizing gases: Catalysis by compounds of iron, cobalt and nickel. Carbon, 2, 163–174. DOI: 10.1016/0008-6223(64)90057-0.Google Scholar
  23. Gandhi, H. S., Graham, G. W., & McCabe, R. W. (2003). Automotive exhaust catalysis. Journal of Catalysis, 216, 433–442. DOI: 10.1016/s0021-9517(02)00067-2.Google Scholar
  24. Gross, M. S., Ulla, M. A., & Querini, C. A. (2009). Catalytic oxidation of diesel soot: New characterization and kinetic evidence related to the reaction mechanism on K/CeO2 catalyst. Applied Catalysis A: General, 360, 81–88. DOI: 10.1016/j.apcata.2009.03.011.Google Scholar
  25. Gross, M. S., Ulla, M. A., & Querini, C. A. (2012). Diesel particulate matter combustion with CeO2 as catalyst. Part I: System characterization and reaction mechanism. Journal of Molecular Catalysis A: Chemical, 352, 86–94. DOI: 10.1016/j.molcata.2011.10.018.Google Scholar
  26. Guillén-Hurtado, N., García-García, A., & Bueno-López, A. (2013). Isotopic study of ceria-catalyzed soot oxidation in the presence of NOx. Journal of Catalysis, 299, 181–187. DOI: 10.1016/j.jcat.2012.11.026.Google Scholar
  27. Harrison, P. G., Ball, I. K., Daniell, W., Lukinskas, P., Céspedes, M., Miró, E. E., & Ulla, M. A. (2003). Cobalt catalysts for the oxidation of diesel soot particulate. Chemical Engineering Journal, 95, 47–55. DOI: 10.1016/s1385-8947(03)00077-9.Google Scholar
  28. Hirano, T., Tosho, T., Watanabe, T., & Akiyama, T. (2009). Self-propagating high-temperature synthesis with post-heat treatment of La1−xSrxFeO3 (x = 0–1) perovskite as catalyst for soot combustion. Journal of Alloys and Compounds, 470, 245–249. DOI: 10.1016/j.jallcom.2008.02.038.Google Scholar
  29. Hong, S. S., Yang J. S., & Lee, G. D. (1999). Catalytic combustion of carbon particulates over perovskite-type oxides. Reaction Kinetics and Catalysis Letters, 66, 305–310. DOI: 10.1007/bf02475805.Google Scholar
  30. Hong, S. S., & Lee, G. D. (2006). Catalytic removal of diesel soot particulates over LaMnO3 perovskite-type oxides. Studies in Surface Science and Catalysis, 159, 261–264. DOI: 10.1016/s0167-2991(06)81583-1.Google Scholar
  31. Jeguirim, M., Tschamber, V., & Ehrburger, P. (2007). Catalytic effect of platinum on the kinetics of carbon oxidation by NO2 and O2. Applied Catalysis B: Environmental, 76, 235–240. DOI: 10.1016/j.apcatb.2007.05.029.Google Scholar
  32. Jelles, S. J., Neeft, J. P. A., van Setten, B. A. A. L., Makkee, M., & Moulijn, J. A. (1998a). Improved soot oxidation by fuel additives and molten salt catalysts. Studies in Surface Science and Catalysis, 116, 621–623. DOI: 10.1016/s0167-2991(98)80917-8.Google Scholar
  33. Jelles, S. J., van Setten, B. A. A. L., Makkee, M., & Moulijn, J. A. (1998b). Supported liquid phase catalysts: A new approach for catalytic oxidation in diesel exhaust particulate emission control. Studies in Surface Science and Catalysis, 116, 667–674. DOI: 10.1016/s0167-2991(98)80922-1.Google Scholar
  34. Jelles, S. J., van Setten, B. A. A. L., Makkee, M., & Moulijn, J. A. (1999a). Molten salts as promising catalysts for oxidation of diesel soot: importance of experimental conditions in testing procedures. Applied Catalysis B: Environmental, 21, 35–49. DOI: 10.1016/s0926-3373(99)00011-9.Google Scholar
  35. Jelles, S. J., Krul, R. R., Makkee, M., & Moulijn, J. A. (1999b). The influence of NOx on the oxidation of metal activated diesel soot. Catalysis Today, 53, 623–630. DOI: 10.1016/s0920-5861(99)00150-9.Google Scholar
  36. Kašpar, J., Fornasiero, P., & Graziani, M. (1999). Use of CeO2-based oxides in the three-way catalysis. Catalysis Today, 50, 285–298. DOI: 10.1016/s0920-5861(98)00510-0.Google Scholar
  37. Katta, L., Sudarsanam, P., Thrimurthulu, G., & Reddy, B. M. (2010). Doped nanosized ceria solid solutions for low temperature soot oxidation: Zirconium versus lanthanum promoters. Applied Catalysis B: Environmental, 101, 101–108. DOI: 10.1016/j.apcatb.2010.09.012.Google Scholar
  38. Kayama, T., Yamazaki, K., & Shinjoh, H. (2010). Nanostructured ceria-silver synthesized in a one-pot redox reaction catalyzes carbon oxidation. Journal of the American Chemical Society, 132, 13154–13155. DOI: 10.1021/ja105403x.Google Scholar
  39. Kimura, R., Elangovan, S. P., Ogura, M., Ushiyama, H., & Okubo, T. (2011). Alkali carbonate stabilized on aluminosilicate via solid ion exchange as a catalyst for diesel soot combustion. The Journal of Physical Chemistry C, 115, 14892–14898. DOI: 10.1021/jp2034664.Google Scholar
  40. Klein, J., Fechete, I., Bresset, V., Garin, F., & Tschamber, V. (2012). Effect of carbon black combustion on NOx trap catalyst performances. Catalysis Today, 189, 60–64. DOI: 10.1016/j.cattod.2012.02.060.Google Scholar
  41. Klein, J., Wu, D. L., Tschamber, V., Fechete, I., & Garin, F. (2013). Carbon-NSR catalyst interaction: Impact on catalyst structure and NOx storage efficiency. Applied Catalysis B: Environmental, 132–133, 527–534. DOI: 10.1016/j.apcatb.2012.12.019.Google Scholar
  42. Krishna, K., & Makkee, M. (2006). Soot oxidation over NOx storage catalysts: Activity and deactivation. Catalysis Today, 114, 48–56. DOI: 10.1016/j.cattod.2006.02.009.Google Scholar
  43. Krishna, K., Bueno-López, A., Makkee, M., & Moulijn, J. A. (2007a). Potential rare-earth modified CeO2 catalysts for soot oxidation part II: Characterisation and catalytic activity with NO + O2. Applied Catalysis B: Environmental, 75, 201–209. DOI: 10.1016/j.apcatb.2007.04.007.Google Scholar
  44. Krishna, K., Bueno-López, A., Makkee, M., & Moulijn, J. A. (2007b). Potential rare earth modified CeO2 catalysts for soot oxidation: I. Characterisation and catalytic activity with O2. Applied Catalysis B: Environmental, 75, 189–200. DOI: 10.1016/j.apcatb.2007.04.010.Google Scholar
  45. Krishna, K., Bueno-López, A., Makkee, M., & Moulijn, J. A. (2007c). Potential rare-earth modified CeO2 catalysts for soot oxidation. Part III. Effect of dopant loading and calcination temperature on catalytic activity with O2 and NO + O2. Applied Catalysis B: Environmental, 75, 210–220. DOI: 10.1016/j.apcatb.2007.04.009.Google Scholar
  46. Kureti, S., Weisweiler, W., & Hizbullah, K. (2003). Simultaneous conversion of nitrogen oxides and soot into nitrogen and carbon dioxide over iron containing oxide catalysts in diesel exhaust gas. Applied Catalysis B: Environmental, 43, 281–291. DOI: 10.1016/s0926-3373(02)00325-9.Google Scholar
  47. Kustov, A. L., Ricciardi, F., & Makkee, M. (2009). NOx storage and high temperature soot oxidation on Pt-Sr/ZrO2 catalyst. Topics in Catalysis, 52, 2058–2062. DOI 10.1007/s11244-009-9394-y.Google Scholar
  48. Lahaye, J., Boehm, S., Chambrion, Ph., & Ehrburger, P. (1996). Influence of cerium oxide on the formation and oxidation of soot. Combustion and Flame, 104, 199–207. DOI: 10.1016/0010-2180(95)00176-x.Google Scholar
  49. Liang, Q., Wu, X. D., Weng, D., & Lu, Z. X. (2008). Selective oxidation of soot over Cu doped ceria/ceria-zirconia catalysts. Catalysis Communications, 9, 202–206. DOI: 10.1016/j.catcom.2007.06.007.Google Scholar
  50. Liang, Q., Wu, X. D., Weng, D., & Xu, H. B. (2008). Oxygen activation on Cu/Mn-Ce mixed oxides and the role in diesel soot oxidation. Catalysis Today, 139, 113–118. DOI: 10.1016/j.cattod.2008.08.013.Google Scholar
  51. Lin, H., Li, Y. J., Shangguan, W. F., & Huang, Z. (2009). Soot oxidation and NOx reduction over BaAl2O4 catalyst. Combustion and Flame, 156, 2063–2070. DOI: 10.1016/j.combustflame.2009.08.006.Google Scholar
  52. Liu, S. T., Obuchi, A., Oi-Uchisawa, J., Nanba, T., & Kushiyama, S. (2001). Synergistic catalysis of carbon black oxidation by Pt with MoO3 or V2O5. Applied Catalysis B: Environmental, 30, 259–265. DOI: 10.1016/s0926-3373(00)00238-1.Google Scholar
  53. Liu, J., Zhao, Z., Xu, C. M., Duan, A. J., Zhu, L., & Wang, X. Z. (2006). The structures of VOx/MOx and alkali-VOx/MOx catalysts and their catalytic performances for soot combustion. Catalysis Today, 118, 315–322. DOI: 10.1016/j.cattod.2006.07.015.Google Scholar
  54. Liu, J., Zhao, Z., Xu, C. M., & Duan, A. J. (2008). Simultaneous removal of NOx and diesel soot over nanometer Ln-Na-Cu-O perovskite-like complex oxide catalysts. Applied Catalysis B: Environmental, 78, 61–72. DOI: 10.1016/j.apcatb.2007.09.001.Google Scholar
  55. Liu, J., Zhao, Z., Chen, Y. S., Xu, C. M., Duan, A. J., & Jiang, G. Y. (2011). Different valent ions-doped cerium oxides and their catalytic performances for soot oxidation. Catalysis Today, 175, 117–123. DOI: 10.1016/j.cattod.2011.05.023.Google Scholar
  56. Liu, S., Wu, X. D., Weng, D., & Ran, R. (2012). NOx-assisted soot oxidation on Pt-Mg/Al2O3 catalysts: Magnesium precursor, Pt particle size, and Pt-Mg interaction. Industrial & Engineering Chemistry Research, 51, 2271–2279. DOI: 10.1021/ie202239c.Google Scholar
  57. López-Suárez, F. E., Bueno-López, A., Illán-Gómez, M. J., Adamski, A., Ura, B., & Trawczynski, J. (2008). Copper catalysts for soot oxidation: Alumina versus perovskite supports. Environmental Science & Technology, 42, 7670–7675. DOI: 10.1021/es8009293.Google Scholar
  58. López-Suárez, F. E., Bueno-López A., Illán-Gómez, M. J., Ura, B., & Trawczynski, J. (2009). Potassium stability in soot combustion perovskite catalysts. Topics in Catalysis, 52, 2097–2100. DOI: 10.1007/s11244-009-9385-z.Google Scholar
  59. Machida, M., Murata, Y., Kishikawa, K., Zhang, D. J., & Ikeue, K. (2008). On the reasons for high activity of CeO2 catalyst for soot oxidation. Chemistry of Materials, 20, 4489–4494. DOI: 10.1021/cm800832w.Google Scholar
  60. Makkee, M., Krijnsen, H. C., Bertin, S. S., Calis, H. P. A., van den Bleek, C. M., & Moulijn, J. A. (2002). Bench-scale demonstration of an integrated deSoot-deNOx system. Catalysis Today, 75, 459–464. DOI: 10.1016/s0920-5861(02)00096-2.Google Scholar
  61. Maricq, M. M. (2007). Chemical characterization of particulate emissions from diesel engines: A review. Journal of Aerosol Science, 38, 1079–1118. DOI: 10.1016/j.jaerosci.2007.08.001.Google Scholar
  62. Matarrese, R., Castoldi, L., Lietti, L., & Forzatti, P. (2009). Simultaneous removal of NOx and soot over Pt-Ba/Al2O3 and Pt-K/Al2O3 DPNR catalysts. Topics in Catalysis, 52, 2041–2046. DOI: 10.1007/s11244-009-9400-4.Google Scholar
  63. McKee, D. W. (1983). Mechanisms of the alkali metal catalysed gasification of carbon. Fuel, 62, 170–175. DOI: 10.1016/0016-2361(83)90192-8.Google Scholar
  64. Milt, V. G., Querini, C. A., Miró, E. E., & Ulla, M. A. (2003). Abatement of diesel exhaust pollutants: NOx adsorption on Co,Ba,K/CeO2 catalysts. Journal of Catalysis, 220, 424–432. DOI: 10.1016/s0021-9517(03)00285-9.Google Scholar
  65. Montanaro, L. (1999). Durability of ceramic filters in the presence of some diesel soot oxidation additives. Ceramics International, 25, 437–445. DOI: 10.1016/s0272-8842(98)00051-0.Google Scholar
  66. Moulijn, J. A., Cerfontain, M. B., & Kapteijn, F. (1984). Mechanism of the potassium catalysed gasification of carbon in CO2. Fuel, 63, 1043–1047. DOI: 10.1016/0016-2361(84)90185-6.Google Scholar
  67. Mul, G., Neeft, J. P. A., Kapteijn, F., Makkee, M., & Moulijn, J. A. (1995). Soot oxidation catalyzed by a Cu/K/Mo/Cl catalyst: evaluation of the chemistry and performance of the catalyst. Applied Catalysis B: Environmental, 6, 339–352. DOI: 10.1016/0926-3373(95)00027-5.Google Scholar
  68. Mul, G., Kapteijn, F., & Moulijn, J. A. (1996). Catalytic oxidation of model soot by metal chlorides. Applied Catalysis B: Environmental, 12, 33–47. DOI: 10.1016/s0926-3373(96)00065-3.Google Scholar
  69. Neeft, J. P. A., Makkee, M., & Moulijn, J. A. (1996a). Diesel particulate emission control. Fuel Processing Technology, 47, 1–69. DOI: 10.1016/0378-3820(96)01002-8.Google Scholar
  70. Neeft, J. P. A., Makkee, M., & Moulijn, J. A. (1996b). Catalysts for the oxidation of soot from diesel exhaust gases. I. An exploratory study. Applied Catalysis B: Environmental, 8, 57–78. DOI: 10.1016/0926-3373(95)00057-7.Google Scholar
  71. Neri, G., Bonaccorsi, L., Donato, A., Milone, C., Musolino, M. G., & Visco, A. M. (1997). Catalytic combustion of diesel soot over metal oxide catalysts. Applied Catalysis B: Environmental, 11, 217–231. DOI: 10.1016/s0926-3373(96)00045-8.Google Scholar
  72. Neri, G., Rizzo, G., Galvagno, S., Donato, A., Musolino, M. G., & Pietropaolo, R. (2003). K- and Cs-FeV/Al2O3 soot combustion catalysts for diesel exhaust treatment. Applied Catalysis B: Environmental, 42, 381–391. DOI: 10.1016/s0926-3373(02)00271-0.Google Scholar
  73. Oi-Uchisawa, J., Obuchi, A., Zhao, Z., & Kushiyama, S. (1998). Carbon oxidation with platinum supported catalysts. Applied Catalysis B: Environmental, 18, L183–L187. DOI: 10.1016/s0926-3373(98)00046-0.Google Scholar
  74. Oi-Uchisawa, J., Obuchi, A., Enomoto, R., Liu, S. T., Nanba, T., & Kushiyama, S. (2000). Catalytic performance of Pt supported on various metal oxides in the oxidation of carbon black. Applied Catalysis B: Environmental, 26, 17–24. DOI: 10.1016/s0926-3373(99)00142-3.Google Scholar
  75. Oi-Uchisawa, J., Wang, S. D., Nanba, T., Ohi, A., & Obuchi, A. (2003). Improvement of Pt catalyst for soot oxidation using mixed oxide as a support. Applied Catalysis B: Environmental, 44, 207–215. DOI: 10.1016/s0926-3373(03)00055-9.Google Scholar
  76. Peng, X. S., Lin, H., Shangguan, W. F., & Huang, Z. (2007). A highly efficient and porous catalyst for simultaneous removal of NOx and diesel soot. Catalysis Communications, 8, 157–161. DOI: 10.1016/j.catcom.2006.04.015.Google Scholar
  77. Peralta, M. A., Milt, V. G., Cornaglia, L. M., & Querini, C. A. (2006). Stability of Ba,K/CeO2 catalyst during diesel soot combustion. Effect of temperature, water, and sulfur dioxide. Journal of Catalysis, 242, 118–130. DOI: 10.1016/j.jcat.2006.05.025.Google Scholar
  78. Pieta, I. S., García-Diéguez, M., Herrera, C., Larrubia, M. A., & Alemany, L. J. (2010). In situ DRIFT-TRM study of simultaneous NOx and soot removal over Pt-Ba and Pt-K NSR catalysts. Journal of Catalysis, 270, 256–267. DOI: 10.1016/j.jcat.2010.01.003.Google Scholar
  79. Reddy, B. M., Bharali, P., Thrimurthulu, G., Saikia, P., Katta, L., & Park, S. E. (2008). Catalytic efficiency of ceria-zirconia and ceria-hafnia nanocomposite oxides for soot oxidation. Catalysis Letters, 123, 327–333. DOI: 10.1007/s10562-008-9427-3.Google Scholar
  80. Russo, N., Fino, D., Saracco, G., & Specchia, V. (2005). Studies on the redox properties of chromite perovskite catalysts for soot combustion. Journal of Catalysis, 229, 459–469. DOI: 10.1016/j.jcat.2004.11.025.Google Scholar
  81. Russo, N., Fino, D., Saracco, G., & Specchia, V. (2008a). Promotion effect of Au on perovskite catalysts for the regeneration of diesel particulate filters. Catalysis Today, 137, 306–311. DOI: 10.1016/j.cattod.2007.09.010.Google Scholar
  82. Russo, N., Furfori, S., Fino, D., Saracco, G., & Specchia, V. (2008b). Lanthanum cobaltite catalysts for diesel soot combustion. Applied Catalysis B: Environmental, 83, 85–95. DOI: 10.1016/j.apcatb.2008.02.006.Google Scholar
  83. Sánchez Escribano, V., Fernández López, E., Gallardo-Amores, J. M., del Hoyo Martínez, C., Pistarino, C., Panizza, M., Resini, C., & Busca, G. (2008). A study of a ceria-zirconiasupported manganese oxide catalyst for combustion of Diesel soot particles. Combustion and Flame, 153, 97–104. DOI: 10.1016/j.combustflame.2007.11.010.Google Scholar
  84. Setiabudi, A., van Setten, B. A. A. L., Makkee, M., & Moulijn, J. A. (2002). The influence of NOx on soot oxidation rate: molten salt versus platinum. Applied Catalysis B: Environmental, 35, 159–166. DOI: 10.1016/s0926-3373(01)00251-x.Google Scholar
  85. Setiabudi, A., Chen, J. L., Mul, G., Makkee, M., & Moulijn, J. A. (2004). CeO2 catalysed soot oxidation: The role of active oxygen to accelerate the oxidation conversion. Applied Catalysis B: Environmental, 51, 9–19. DOI: 10.1016/j.apcatb.2004.01.005.Google Scholar
  86. Shangguan, W. F., Teraoka, Y., & Kagawa, S. (1996). Simultaneous catalytic removal of NOx and diesel soot particulates over ternary AB2O4 spinel-type oxides. Applied Catalysis B: Environmental, 8, 217–227. DOI: 10.1016/0926-3373(95)00070-4.Google Scholar
  87. Shangguan, W. F., Teraoka, Y., & Kagawa, S. (1998). Promotion effect of potassium on the catalytic property of CuFe2O4 for the simultaneous removal of NOx and diesel soot particulate. Applied Catalysis B: Environmental, 16, 149–154. DOI: 10.1016/s0926-3373(97)00068-4.Google Scholar
  88. Teraoka, Y., Nakano, K., Kagawa, S., & Shangguan, W. F. (1995). Simultaneous removal of nitrogen oxides and diesel soot particulates catalyzed by perovskite-type oxides. Applied Catalysis B: Environmental, 5, L181–L185. DOI: 10.1016/0926-3373(94)00059-x.Google Scholar
  89. Teraoka, Y., Nakano, K., Shangguan, W. F., & Kagawa, S. (1996). Simultaneous catalytic removal of nitrogen oxides and diesel soot particulate over perovskite-related oxides. Catalysis Today, 27, 107–113. DOI: 10.1016/0920-5861(95)00177-8.Google Scholar
  90. Teraoka, Y., Kanada, K., & Kagawa, S. (2001). Synthesis of La-K-Mn-O perovskite-type oxides and their catalytic property for simultaneous removal of NOx and diesel soot particulates. Applied Catalysis B: Environmental, 34, 73–78. DOI: 10.1016/s0926-3373(01)00202-8.Google Scholar
  91. Tikhomirov, K., Kröcher, O., Elsener, M., & Wokaun, A. (2006). MnOx-CeO2 mixed oxides for the low-temperature oxidation of diesel soot. Applied Catalysis B: Environmental, 64, 72–78. DOI: 10.1016/j.apcatb.2005.11.003.Google Scholar
  92. Twigg, M. V. (2006). Roles of catalytic oxidation in control of vehicle exhaust emissions. Catalysis Today, 117, 407–418. DOI: 10.1016/j.cattod.2006.06.044.Google Scholar
  93. Twigg, M. V. (2007). Progress and future challenges in controlling automotive exhaust gas emissions. Applied Catalysis B: Environmental, 70, 2–15. DOI: 10.1016/j.apcatb.2006.02.029.Google Scholar
  94. Ura, B., Trawczyński, J., Kotarba, A., Bieniasz, W., Illán-Gómez M. J., Bueno-López, A., & López-Suárez, F. E. (2011). Effect of potassium addition on catalytic activity of SrTiO3 catalyst for diesel soot combustion. Applied Catalysis B: Environmental, 101, 169–175. DOI: 10.1016/j.apcatb.2010.09.018.Google Scholar
  95. Van Craenenbroeck, J., Andreeva, D., Tabakova, T., Van Werde, K., Mullens, J., & Verpoort, F. (2002). Spectroscopic analysis of Au-V-based catalysts and their activity in the catalytic removal of diesel soot particulates. Journal of Catalysis, 209, 515–527. DOI: 10.1006/jcat.2002.3649.Google Scholar
  96. van Setten, B. A. A. L., van Dijk, R., Jelles, S. J., Makkee, M., & Moulijn, J. A. (1999a). The potential of supported molten salts in the removal of soot from diesel exhaust gas. Applied Catalysis B: Environmental, 21, 51–61. DOI: 10.1016/s0926-3373(99)00008-9.Google Scholar
  97. van Setten, B. A. A. L., Bremmer, J., Jelles, S. J., Makkee, M., & Moulijn, J. A. (1999b). Ceramic foam as a potential molten salt oxidation catalyst support in the removal of soot from diesel exhaust gas. Catalysis Today, 53, 613–621. DOI: 10.1016/s0920-5861(99)00149-2.Google Scholar
  98. van Setten, B. A. A. L., Schouten, J. M., Makkee, M., & Moulijn, J. A. (2000). Realistic contact for soot with an oxidation catalyst for laboratory studies. Applied Catalysis B: Environmental, 28, 253–257. DOI: 10.1016/s0926-3373(00)00182-x.Google Scholar
  99. van Setten, B. A. A. L., Makkee, M., & Moulijn, J. A. (2001a). Science and technology of catalytic diesel particulate filters. Catalysis Reviews: Science and Engineering, 43, 489–564. DOI: 10.1081/cr-120001810.Google Scholar
  100. van Setten, B. A. A. L., van Gulijk, C., Makkee, M., & Moulijn, J. A. (2001b). Molten salts are promising catalysts. How to apply in practice? Topics in Catalysis, 16–17, 275–278. DOI: 10.1023/a:1016644612038.Google Scholar
  101. van Setten, B. A. A. L., Spitters, C. G. M., Bremmer, J., Mulders, A. M. M., Makkee, M., & Moulijn, J. A. (2003). Stability of catalytic foam diesel-soot filters based on Cs2O, MoO3, and Cs2 SO4 molten-salt catalysts. Applied Catalysis B: Environmental, 42, 337–347. DOI: 10.1016/s0926-3373(02)00265-5.Google Scholar
  102. Villani, K., Kirschhock, C. E. A., Liang, D. D., Van Tendeloo, G., & Martens, J. A. (2006). Catalytic carbon oxidation over ruthenium-based catalysts. Angewandte Chemie International Edition, 45, 3106–3109. DOI: 10.1002/anie.200503799.Google Scholar
  103. Wang, H., Zhao, Z., Liang, P., Xu, C. M., Duan, A. J., Jiang, G. Y., Xu, J., & Liu, J. (2008). Highly active La1−xKxCoO3 perovskite-type complex oxide catalysts for the simultaneous removal of diesel soot and nitrogen oxides under loose contact conditions. Catalysis Letters, 124, 91–99. DOI: 10.1007/s10562-008-9429-1.Google Scholar
  104. Wei, Y. C., Liu, J., Zhao, Z., Xu, C. M., Duan, A. J., & Jiang, G. Y. (2013). Structural and synergistic effects of threedimensionally ordered macroporous Ce0.8Zr0.2O2-supported Pt nanoparticles on the catalytic performance for soot combustion. Applied Catalysis A: General, 453, 250–261. DOI: 10.1016/j.apcata.2012.12.013.Google Scholar
  105. Wu, X. D., Liang, Q., Weng, D., & Lu, Z. X. (2007). The catalytic activity of CuO-CeO2 mixed oxides for diesel soot oxidation with a NO/O2 mixture. Catalysis Communications, 8, 2110–2114. DOI: 10.1016/j.catcom.2007.04.023.Google Scholar
  106. Xu, J. F., Liu, J., Zhao, Z., Zheng, J. X., Zhang, G. Z., Duan, A. J., & Jiang, G. Y. (2010). Three-dimensionally ordered macroporous LaCoxFe1−xO3 perovskite-type complex oxide catalysts for diesel soot combustion. Catalysis Today, 153, 136–142. DOI: 10.1016/j.cattod.2010.01.063.Google Scholar
  107. Yao, W. S., Wang, R. J., & Yang, X. X. (2009). LaCo1−xPdxO3 perovskite-type oxides: Synthesis, characterization and simultaneous removal of NOx and diesel soot. Catalysis Letters, 130, 613–621. DOI: 10.1007/s10562-009-9905-2.Google Scholar
  108. Zawadzki, M., Staszak, W., López-Suárez, F. E., Illán-Gómez, M. J., & Bueno-López, A. (2009). Preparation, characterisation and catalytic performance for soot oxidation of coppercontaining ZnAl2O4 spinels. Applied Catalysis A: General, 371, 92–98. DOI: 10.1016/j.apcata.2009.09.035.Google Scholar
  109. Zawadzki, M., Walerczyk, W., López-Suárez, F. E., Illán-Gómez, M. J., & Bueno-López, A. (2011). CoAl2O4 spinel catalyst for soot combustion with NOx/O2. Catalysis Communications, 12, 1238–1241. DOI: 10.1016/j.catcom.2011.04.021.Google Scholar
  110. Zhang, G. Z., Zhao, Z., Liu, J., Xu, J. F., Jing, Y. N., Duan, A. J., & Jiang, G. Y. (2010a). Macroporous perovskite-type complex oxide catalysts of La1−xKxCo1−yFeyO3 for diesel soot combustion. Journal of Rare Earths, 27, 955–960. DOI: 10.1016/s1002-0721(08)60369-5.Google Scholar
  111. Zhang, G. Z., Zhao, Z., Liu, J., Jiang, G. Y., Duan, A. J., Zheng, J. X., Chen, S. L., & Zhou, R. X. (2010b). Three dimensionally ordered macroporous Ce1−xZrxO2 solid solutions for diesel soot combustion. Chemical Communications, 46, 457–459. DOI: 10.1039/b915027g.Google Scholar
  112. Zhang-Steenwinkel, Y., van der Zande, L. M., Castricum, H. L., Bliek, A., van den Brink, R. W., & Elzinga, G. D. (2005). Microwave-assisted in-situ regeneration of a perovskite coated diesel soot filter. Chemical Engineering Science, 60, 797–804. DOI: 10.1016/j.ces.2004.09.042.Google Scholar
  113. Zheng, J. X., Liu, J., Zhao, Z., Xu, J. F., Duan, A. J., & Jiang, G. Y. (2012). The synthesis and catalytic performances of three-dimensionally ordered macroporous perovskite-type LaMn1−xFexO3 complex oxide catalysts with different pore diameters for diesel soot combustion. Catalysis Today, 191, 146–153. DOI: 10.1016/j.cattod.2011.12.013.Google Scholar
  114. Zhu, L., Yu, J. J., & Wang, X. Z. (2007). Oxidation treatment of diesel soot particulate on CexZr1−xO2. Journal of Hazardous Materials, 140, 205–210. DOI: 10.1016/j.jhazmat.2006.06.055.Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2013

Authors and Affiliations

  • Ana M. Hernández-Giménez
    • 1
  • Dolores Lozano Castelló
    • 1
  • Agustín Bueno-López
    • 1
  1. 1.Department of Inorganic ChemistryUniversity of AlicanteAlicanteSpain

Personalised recommendations