Skip to main content
Log in

Enantioseparation of mandelic acid enantiomers in ionic liquid aqueous two-phase extraction systems

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In the past decade, ionic liquids have received great attention owing to their potential as green solvent alternatives to conventional organic solvents. In this work, hydrophobic achiral ionic liquids (1-butyl-3-methylimidazolium-hexafluorophosphate([bmim][PF6]), 1-octyl-3-methylimidazolium tetrafluoroborate([omim][BF4])) were used as solvents in chiral liquid-liquid extraction separation of mandelic acid (MA) enantiomers with β-cyclodextrin (β-CD) derivatives as hydrophilic chiral selectors preferentially forming complexes with (R)-enantiomers. Factors affecting the separation efficiency were optimised, namely the type of the extraction solvents and β-CD derivatives, concentrations of the β-CD derivatives and MA enantiomers, pH, and temperature. Excellent enantioseparation of MA enantiomers was achieved in the ionic liquid aqueous two-phase extraction systems under the optimal conditions of pH 2.5 and temperature of 5°C with the maximum enantioselectivity (α) of 1.74. The experimental results demonstrated that the ionic liquid aqueous two-phase extraction systems with a β-CD derivative as the chiral selector have a strong chiral recognition ability, which might extend the application of ionic liquids in chiral separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Choi, W. J., Lee, K. Y., Kang, S. H., & Lee, S. H. (2007). Biocatalytic enantioconvergent separation of racemic mandelic acid. Separation and Purification Technology, 53, 178–182. DOI: 10.1016/j.seppur.2006.06.024.

    Article  CAS  Google Scholar 

  • Colera, M., Costero, A. M., Gaviña, P., & Gil, S. (2005). Synthesis of chiral 18-crown-6 ethers containing lipophilic chains and their enantiomeric recognition of chiral ammonium picrates. Tetrahedron: Asymmetry, 16, 2673–2679. DOI: 10.1016/j.tetasy.2005.06.039.

    CAS  Google Scholar 

  • Fanali, S., Aturki, Z., & Desiderio, C. (1998). New strategies for chiral analysis of drugs by capillary electrophoresis. Forensic Science International, 92, 137–155. DOI: 10.1016/s0379-0738(98)00013-9.

    Article  CAS  Google Scholar 

  • Fu, Y. Z., Wang, L. L., Chen, Q., & Zhou, J. (2011). Enantioselective recognition of chiral mandelic acid in the presence of Zn(II) ions by L-cysteine-modified electrode. Sensors and Actuators B: Chemical, 155, 140–144. DOI: 10.1016/j.snb.2010.11.038.

    Article  CAS  Google Scholar 

  • Goharshadi, E. K., & Moosavi, M. (2008). Thermodynamic properties of some ionic liquids using a simple equation of state. Journal of Molecular Liquids, 142, 41–44. DOI: 10.1016/j.molliq.2008.04.005.

    Article  CAS  Google Scholar 

  • Horvath, J. D., Koritnik, A., Kamakoti, P., Sholl, D. S., & Gellman, A. J. (2004). Enantioselective separation on a naturally chiral surface. Journal of the American Chemical Society, 126, 14988–14994. DOI: 10.1021/ja045537h.

    Article  CAS  Google Scholar 

  • Huang, H. F., Nandhakumar, R., Choi, M. S., Su, Z. S., & Kim, K. M. (2013). Enantioselective liquid-liquid extractions of underivatized general amino acids with a chiral ketone extractant. Journal of the American Chemical Society, 135, 2653–2658. DOI: 10.1021/ja3105945.

    Article  CAS  Google Scholar 

  • Jiao, F. P., Chen, X. Q., Hu, W. G, Ning, F. R., & Huang, K. L. (2007). Enantioselective extraction of mandelic acid enantiomers by L-dipentyl tartrate and β-cyclodextrin as binary chiral selectors. Chemical Papers, 61, 326–328. DOI: 10.2478/s11696-007-0041-4.

    Article  CAS  Google Scholar 

  • Keurentjes, J. T. F., Nabuurs, L. J. W. M., & Vegter, E. A. (1996). Liquid membrane technology for the separation of racemic mixtures. Journal of Membrane Science, 113, 351–360. DOI: 10.1016/0376-7388(95)00176-x.

    Article  CAS  Google Scholar 

  • Kocabas, E., Karakucuk, A., Sirit, A., & Yilmaz, M. (2006). Synthesis of new chiral calix[4]arene diamide derivatives for liquid phase extraction of α-amino acid methylesters. Tetrahedron: Asymmetry, 17, 1514–1520. DOI: 10.1016/j.tetasy.2006.05.016.

    CAS  Google Scholar 

  • Liu, W. W., Cheng, L. Y., Zhang, Y. M., Wang, H. P., & Yu, M. F. (2008). The physical properties of aqueous solution of room-temperature ionic liquids based on imidazolium: Database and evaluation. Journal of Molecular Liquids, 140, 68–72. DOI: 10.1016/j.molliq.2008.01.008.

    Article  CAS  Google Scholar 

  • Martín, A., & Cocero, M. J. (2007). Separation of enantiomers by diastereomeric salt formation and precipitation in supercritical carbon dioxide: Application to the resolution of mandelic acid. The Journal of Supercritical Fluids, 40, 67–73. DOI: 10.1016/j.supflu.2006.03.018.

    Article  Google Scholar 

  • Miyako, E., Maruyama, T., Kamiya, N., & Goto, M. (2004). Highly enantioselective separation using a supported liquid membrane encapsulating surfactant-enzyme complex. Journal of the American Chemical Society, 126, 8622–8623. DOI: 10.1021/ja049378d.

    Article  CAS  Google Scholar 

  • Schuur, B., Verkuijl, B. J. V., Minnaard, A. J., de Vries, J. G., Heeres, H. J., & Feringa, B. L. (2011). Chiral separation by enantioselective liquid-liquid extraction. Organic & Biomolecular Chemistry, 9, 36–51. DOI: 10.1039/c0ob00610f.

    Article  CAS  Google Scholar 

  • Seo, J. S., Whang, D. M., Lee, H. Y., Jun, S. I., Oh, J. H., Jeon, Y. J., & Kim, K. M. (2000). A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature, 404, 982–986. DOI: 10.1038/35010088.

    Article  CAS  Google Scholar 

  • Shamsipur, M., Beigi, A. A. M., Teymouri, M., Pourmortazavi, S. M., & Irandoust, M. (2010). Physical and electrochemical properties of ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate and 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl)imide. Journal of Molecular Liquids, 157, 43–50. DOI: 10.1016/j.molliq.2010.08.005.

    Article  CAS  Google Scholar 

  • Steensma, M., Kuipers, N. J. M., de Haan, A. B., & Kwant, G. (2007a). Modelling and experimental evaluation of reaction kinetics in reactive extraction for chiral separation of amines, amino acids and amino-alcohols. Chemical Engineering Science, 62, 1395–1407. DOI: 10.1016/j.ces.2006.11.043.

    Article  CAS  Google Scholar 

  • Steensma, M., Kuipers, N. J. M, de Haan, A. B., & Kwant, G. (2007b). Analysis and optimization of enantioselective extraction in a multi-product environment with a multistage equilibrium model. Chemical Engineering and Processing: Process Intensification, 46, 996–1005. DOI: 10.1016/j.cep.2007.05.008.

    Article  CAS  Google Scholar 

  • Tang, K. W., Zhou, C. S., & Jiang, X. Y. (2003). Racemic ofloxacin separation by supported-liquid membrane extraction with two organic phases. Science in China Series B: Chemistry, 46, 96–103. DOI: 10.1360/03yb9014.

    CAS  Google Scholar 

  • Tang, K. W., Chen, Y. Y., Huang, K. L., & Liu, J. J. (2007). Enantioselective resolution of chiral aromatic acids by biphasic recognition chiral extraction. Tetrahedron: Asymmetry, 18, 2399–2408. DOI: 10.1016/j.tetasy.2007.09.031.

    CAS  Google Scholar 

  • Tang, K. W., Yi, J. M., Liu, Y. B., Jiang, X. Y., & Pan, Y. (2009a). Enantioselective separation of R,S-phenylsuccinic acid by biphasic recognition chiral extraction. Chemical Engineering Science, 64, 4081–4088. DOI: 10.1016/j.ces.2009.06.029.

    Article  CAS  Google Scholar 

  • Tang, K. W., Yi, J. M., Huang, K. L., & Zhang, G. L. (2009b). Biphasic recognition chiral extraction: A novel method for separation of mandelic acid enantiomers. Chirality, 21(3), 390–395. DOI: 10.1002/chir.20601.

    Article  CAS  Google Scholar 

  • Tang, F., Zhang, Q. L., Ren, D. D., Nie, Z., Liu, Q., & Yao, S. Z. (2010). Functional amino acid ionic liquids as solvent and selector in chiral extraction. Journal of Chromatography A, 1217, 4669–4674. DOI: 10.1016/j.chroma.2010.05.013.

    Article  CAS  Google Scholar 

  • Tang, K. W., Miao, J. B., Zhou, T., Liu, Y. B., & Song, L. T. (2011). Reaction kinetics in reactive extraction for chiral separation of α-cyclohexyl-mandelic acid enantiomers with hydroxypropyl-β-cyclodextrin. Chemical Engineering Science, 66, 397–404. DOI: 10.1016/j.ces.2010.10.044.

    Article  CAS  Google Scholar 

  • Tang, K. W., Song, L. T., Liu, Y. B., & Miao, J. B. (2012a). Enantioselective partitioning of 2-phenylpropionic acid enantiomers in a biphasic recognition chiral extraction system. Chemical Engineering Journal, 180, 293–298. DOI: 10.1016/j.cej.2011.11.065.

    Article  CAS  Google Scholar 

  • Tang, K. W., Cai, J., Yang, C. G., Liu, Y. J., Zhang, P. L., & Liu, Y. B. (2012b). Kinetic study on reactive extraction for chiral separation of oxybutynin enantiomers. Separation and Purification Technology, 92, 30–35. DOI: 10.1016/j.seppur.2012.03.011.

    Article  CAS  Google Scholar 

  • Viegas, R. M. C., Afonso, C. A. M., Crespo, J. G., & Coelhoso, I. M. (2007). Modelling of the enantio-selective extraction of propranolol in a biphasic system. Separation and Purification Technology, 53, 224–234. DOI: 10.1016/j.seppur.2006.07.010.

    Article  CAS  Google Scholar 

  • Wang, Z., Cai, C. Q., Lin, Y. T., Bian, Y. R., Guo, H. Q., & Chen, X. M. (2011). Enantioselective separation of ketoconazole enantiomers by membrane extraction. Separation and Purification Technology, 79, 63–71. DOI: 10.1016/j.seppur.2011.03.013.

    Article  CAS  Google Scholar 

  • Yu, R. J., & Van Scott, E. J. (2004). Alpha-hydroxyacids and carboxylic acids. Journal of Cosmetic Dermatology, 3, 76–87. DOI: 10.1111/j.1473-2130.2004.00059.x.

    Article  Google Scholar 

  • Zhou, C. S., Xu, P., Tang, K. W., Jiang, X. Y., Yang, T., & Zhang, P. L. (2013). Enantioselective extraction of hydrophilic 2-chloromandelic acid enantiomers by hydroxypropyl-β-cyclodextrin: experiments and modeling. Chemical Papers, 67, 155–163. DOI: 10.2478/s11696-012-0268-6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin-Yu Jiang or Jing-Gang Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yue, Y., Jiang, XY., Yu, JG. et al. Enantioseparation of mandelic acid enantiomers in ionic liquid aqueous two-phase extraction systems. Chem. Pap. 68, 465–471 (2014). https://doi.org/10.2478/s11696-013-0467-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0467-9

Keywords

Navigation