Skip to main content
Log in

Production and application of amylases of Rhizopus oryzae and Rhizopus microsporus var. oligosporus from industrial waste in acquisition of glucose

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Amylases from Rhizopus oryzae and Rhizopus microsporus var. oligosporus were obtained using agro-industrial wastes as substrates in submerged batch cultures. The enzymatic complex was partially characterised for use in the production of glucose syrup. Type II wheat flour proved better than cassava bagasse as sole carbon source for amylase production. The optimum fermentation condition for both microorganisms was 96 hours at 30°C and the amylase thus produced was used for starch hydrolysis. The product of the enzymatic hydrolysis indicated that the enzyme obtained was glucoamylase, only glucose as final product was attained for both microorganisms. R. oligosporus was of greater interest than R. oryzae for amylase production, taking into account enzyme activity, cultivation time, thermal stability and pH range. Glucose syrup was produced using concentrated enzyme and 100 g L−1 starch in a 4 hours reaction at 50°C. The bioprocess studied can contribute to fungus glucoamylase production and application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anto, H., Trivedi, U., & Patel, K. (2006). Alpha amylase production by Bacillus cereus MTCC 1305 using solid-state fermentation. Food Technology and Biotechnology, 44, 241–245.

    CAS  Google Scholar 

  • Asgher, M., Asad, J. M., Rahman, S. U., & Legge, R. L. (2007). A thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. Journal of Food Engineering, 79, 950–955. DOI: 10.1016/j.jfoodeng.2005.12.053.

    Article  CAS  Google Scholar 

  • Belmessikh, A., Boukhalfa, H., Mechakra-Maza, A., Gheribi-Aoulmi, Z., & Amrane, A. (2013). Statistical optimization of culture medium for neutral protease production by Aspergillus oryzae. Comparative study between solid and submerged fermentations on tomato pomace. Journal of the Taiwan Institute of Chemical Engineers, 44, 377–385. DOI: 10.1016/j.jtice.2012.12.011.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid sensitive method for a quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. DOI: 10.1016/0003-2697(76)90527-3.

    Article  CAS  Google Scholar 

  • Carvalho, A. F. A., Gonçalves, A. Z., da Silva, R., & Gomes, E. (2006). A specific short dextrin-hydrolyzing extracellular glucosidase from the thermophilic fungus Thermoascus aurantiacus 179-5. The Journal of Microbiology, 44, 276–283.

    CAS  Google Scholar 

  • Castro, A. M., Carvalho, D. F., Freire, D. M. G., & Dos Reis Castilho, L. (2010). Economic analysis of the production of amylases and other hydrolases by Aspergillus awamori in solid-state fermentation of babassu cake. Enzyme Research, 2010, 576872. DOI: 10.4061/2010/576872.

    Google Scholar 

  • de Souza, P. M., & Magalhães, P. O. (2010). Application of microbial α-amylase in industry — A review. Brazilian Journal of Microbiology, 41, 850–861. DOI: 10.1590/s1517-83822010000400004.

    Google Scholar 

  • Elisashvili, V., Kachlishvili, E., & Penninckx, M. (2008). Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes. Journal of Industrial Microbiology & Biotechnology, 35, 1531–1538. DOI: 10.1007/s10295-008-0454-2.

    Article  CAS  Google Scholar 

  • Ezeji, T. C., & Bahl, H. (2006). Purification, characterization, and synergistic action of phytate-resistant α-amylase and α-glucosidase from Geobacillus thermodenitrificans HRO10. Journal of Biotechnology, 125, 27–38. DOI:10.1016/j.jbiotec.2006.02.006.

    Article  CAS  Google Scholar 

  • Franco, C. M. L., Daiuto, E. R., Demiate, I. M., Carvalho, L. J. C. B., Leonel, M., Cereda, M. P., Vilpoux, O. F., & Sarmento, S. B. S. (2001). Propriedades gerais do amido (Vol. 1, pp. 141–185). São Paulo, Brazil: Fundação Cargill.

    Google Scholar 

  • Gangadharan, D., & Sivaramakrishnan, S. (2009). Amylolytic enzymes. In P. S. N. Nigan, & A. Pandey (Eds), Biotechnology for agro-industrial residues utilisation (pp. 359–369). Netherlands: Springer. DOI: 10.1007/978-1-4020-9942-7.

    Chapter  Google Scholar 

  • Ghosh, B., & Ray, R. R. (2010). Saccharification of raw native starches by extracellular isoamylase of Rhizopus oryzae. Biotechnology, 9, 224–228. DOI: 10.3923/biotech.2010.224.228.

    Article  CAS  Google Scholar 

  • Ghosh, B., & Ray, R. (2011). Current commercial perspective of Rhizopus oryzae: A review. Journal of Applied Sciences, 14, 2470–2486. DOI: 10.3923/jas.2011.2470.2486.

    Google Scholar 

  • Gomes, E., Guez, M. A. U., Martin, N., & da Silva, R. (2007). Enzimas termoestávies: Fontes, produção e aplicação industrial. Química Nova, 30, 136–145. DOI: 10.1590/s0100-40422007000100025. (in Portugese)

    Article  CAS  Google Scholar 

  • Gupta, R., Gigras, P., Mohapatra, H., Goswami, V. K., & Chauhan, B. (2003). Microbial α-amylases: a biotechnological perspective. Process Biochemistry, 38, 1599–1616. DOI: 10.1016/s0032-9592(03)00053-0.

    Article  CAS  Google Scholar 

  • Ikram-ul-Haq, Ashraf, H., Iqbal, J., & Qadeer, M. (2003). Production of alpha amylase by Bacillus licheniformis using an economical medium. Bioresource Technology, 87, 57–61.

    Article  CAS  Google Scholar 

  • Krishna, C. (2005). Solid-state fermentation systems — an overview. Critical Reviews in Biotechnology, 25, 1–30. DOI: 10.1080/07388550590925383.

    Article  CAS  Google Scholar 

  • Kumar, V., Sahai, V., & Bisaria, V. S. (2012). Production of amylase and chlamydospores by Piriformospora indica, a root endophytic fungus. Biocatalysis and Agricultural Biotechnology, 1, 124–128. DOI: 10.1016/j.bcab.2012.02.002.

    Article  CAS  Google Scholar 

  • Liu, X. D., & Xu, Y. (2008). A novel raw starch digesting α-amylase from a newly isolated Bacillus sp. YX-1: Purification and characterization. Bioresource Technology, 99, 4315–4320. DOI: 10.1016/j.biortech.2007.08.040.

    Article  CAS  Google Scholar 

  • Michelin, M., Silva, T. M., Benassi, V. M., Peixoto-Nogueira, S. C., Moraes, L. A. B., Leão, J. M., Jorge, J. A., Terenzi, H. F., & Polizeli, M. D. T. M. (2010). Purification and characterization of a thermostable α-amylase produced by the fungus Paecilomyces variotii. Carbohydrate Research, 345, 2348–2353. DOI: 10.1016/j.carres.2010.08.013.

    Article  CAS  Google Scholar 

  • Mitidieri, S., Souza Martinelli, A. H., Schrank, A., & Vainstein, M. H. (2006). Enzymatic detergent formulation containing amylase from Aspergillus niger. A comparative study with commercial detergent formulations. Bioresource Technology, 97, 1217–1224. DOI: 10.1016/j.biortech.2005.05.022.

    Article  CAS  Google Scholar 

  • Mosier, N. S., & Ladisch, M. R. (2009). Modern biotechnology: Connecting innovations in microbiology and biochemistry to engineering fundamentals (pp. 433). Hoboken, NJ, USA: Wiley.

    Book  Google Scholar 

  • Nitayavardhana, S., & Khanal, S. K. (2011). Biodiesel-derived crude glycerol bioconversion to animal feed: A sustainable option for a biodiesel refinery. Bioresource Technology, 102, 5808–5814. DOI: 10.1016/j.biortech.2011.02.058.

    Article  CAS  Google Scholar 

  • Norouzian, D., Akbarzadeh, A., Scharer, J. M., & Young, M. M. (2006). Fungal glucoamylases. Biotechnology Advances, 24, 80–85. DOI: 10.1016/j.biotechadv.2005.06.003.

    Article  CAS  Google Scholar 

  • Pandey, A., Nigam, P., Soccol, C. R., Soccol, V. T., Singh, D., & Mohan, R. (2000). Advances in microbial amylases. Biotechnology and Applied Biochemistry, 31, 135–152.

    Article  CAS  Google Scholar 

  • Peixoto, S. C., Jorge, J. A., Terenzi, H. F., & Polizeli, M. D. T. M. (2003). Rhizopus microsporus var. rhizopodiformis: a thermotolerant fungus with potential for production of thermostable amylases. International Microbiology, 6, 269–273. DOI: 10.1007/s10123-003-0140-1.

    Article  CAS  Google Scholar 

  • Rani, R., & Ghosh, S. (2011). Production of phytase under solid-state fermentation using Rhizopus oryzae: Novel strain improvement approach and studies on purification and characterization. Bioresource Technology, 102, 10641–10649. DOI: 10.1016/j.biortech.2011.08.075.

    Article  CAS  Google Scholar 

  • Sarrouh, B., Santos, T. M., Miyoshi, A., Dias, R., & Azevedo, V. (2012). Up-to-date insight on industrial enzymes applications and global market. Journal of Bioprocessing & Biotechniques, S4, 002. DOI: 10.4172/2155-9821.s4-002.

    Google Scholar 

  • Sharma, A., & Satyanarayana, T. (2013). Microbial acid-stable α-amylases: Characteristics, genetic engineering and applications. Process Biochemistry, 48, 201–211. DOI: 10.1016/j.procbio.2012.12.018.

    Article  CAS  Google Scholar 

  • Sivaramakrishnan, S., Gangadharan, D., Madhavan, K., Soccol, C. R., & Pandey, A. (2006). α-Amylases from microbial sources — an overview on recent developments. Food Technology and Biotechnology, 44, 173–184.

    CAS  Google Scholar 

  • Soccol, C. R., Iloki, I., Marin, B., & Raimbault, M. (1994). Comparative production of alpha-amylase, glucoamylase and protein enrichment of raw and cooked cassava by Rhizopus strains in submerged and solid state fermentations. Journal of Food Science and Technology, 31, 320–323.

    CAS  Google Scholar 

  • Soccol, C. R., & Vandenberghe, L. P. S. (2003). Overview of applied solid-state fermentation in Brazil. Biochemical Engineering Journal, 13, 205–218. DOI: 10.1016/s1369-703x(02)00133-x.

    Article  CAS  Google Scholar 

  • Soccol, C. R., Rojan, P. J., Patel, A. K., Woiciechowski, A. L., Vandenberghe, L. P. S., & Pandey, A. (2006). Glucoamylase. In: A. Pandey, C. Webb, C. R. Soccol, & C. Larroche (Eds.), Enzyme technology (pp. 221–230). New Delhi, India: Asiatec Publishers.

    Google Scholar 

  • Soni, S. K., Kaur, A., & Gupta, J. K. (2003). A solid state fermentation based bacterial α-amylase and fungal glucoamylase system and its suitability for the hydrolysis of wheat starch. Process Biochemistry, 39, 185–192. DOI: 10.1016/s0032-9592(03)00058-x.

    Article  CAS  Google Scholar 

  • Surmely, R., Alvarez, H., Cereda, M. P., & Vilpoux, O. F. (2003). Hidrólise do amido. In M. P. Cereda, & O. F. Vilpoux (Eds.), Tecnologia, usos e potencialidades de tuberosas amiláceas Latino Americanas (Vol. 3, pp. 376–449). São Paulo, Brazil: Fundação Cargill. (in Portugese)

    Google Scholar 

  • van der Maarel, M. J. E. C., van der Veen, B., Uitdehaag, J. C. M., Leemhuis, H., & Dijkhuizen, L. (2002). Properties and applications of starch-converting enzymes of the α-amylase family. Journal of Biotechnology, 94, 137–155. DOI: 10.1016/s0168-1656(01)00407-2.

    Article  Google Scholar 

  • van Leeuwen, J., Rasmussen, M. L., Sankaran, S., Koza, C. R., Erickson, D. T., Mitra, D., & Jin, B. (2012). Fungal treatment of crop processing wastewaters with value-added coproducts. In K. Gopalakrishnan, J. van Leeuwen, & R. C. Brown (Eds.), Sustainable bioenergy and bioproducts, green energy and technology (pp. 13–44). London, UK: Springer. DOI: 10.1007/978-1-4471-2324-82.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline Costa de Freitas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Freitas, A.C., Escaramboni, B., Carvalho, A.F.A. et al. Production and application of amylases of Rhizopus oryzae and Rhizopus microsporus var. oligosporus from industrial waste in acquisition of glucose. Chem. Pap. 68, 442–450 (2014). https://doi.org/10.2478/s11696-013-0466-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0466-x

Keywords

Navigation