Skip to main content

Montmorillonite intercalated with SiO2, SiO2-Al2O3 or SiO2-TiO2 pillars by surfactant-directed method as catalytic supports for DeNOx process

Abstract

The intercalation of natural montmorillonite with SiO2, SiO2-Al2O3 or SiO2-TiO2 pillars by the surfactant-directed method resulted in the formation of high surface area porous materials; these were tested as catalytic supports for the process of selective catalytic reduction of NO (DeNOx). The incorporation of titanium or aluminium into the structure of the silica pillars significantly increased the surface acidity of the clay samples. Iron and copper were deposited onto the surface of the pillared clays mainly in the form of monomeric isolated cations and oligomeric metal oxide species. The contribution of the latter species was higher in the clay intercalated with SiO2-TiO2 pillars than in the samples modified with SiO2 and SiO2-Al2O3 pillars. The pillared clay-based catalysts were active in the DeNOx process but, in this group, the best results were obtained for the clay intercalated with SiO2-TiO2 pillars and doped with iron and copper. The catalytic performance of the samples is discussed in respect of their surface acidity and active forms of transition metal species deposited.

This is a preview of subscription content, access via your institution.

References

  • Adams, J. M., & McCabe, R. W. (2006). Clay minerals as catalysts. In F. Bergaya, B. K. G. Theng, & G. Lagaly (Eds.), Handbook of clay science (pp. 541–581). Amsterdam, The Netherlands: Elsevier.

    Chapter  Google Scholar 

  • Busca, G., Lietti, L., Ramis, G., & Berti, F. (1998). Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review. Applied Catalysis B: Environmental, 18, 1–36. DOI: 10.1016/s0926-3373(98)00040-x.

    CAS  Article  Google Scholar 

  • Centi, G., & Perathoner, S. (1995). Adsorption and reactivity of NO on copper-on-alumina catalysts: II. Adsorbed species and competitive pathways in the reaction of NO with NH3 and O2. Journal of Catalysis, 152, 93–102. DOI: 10.1006/jcat.1995.1063.

    CAS  Article  Google Scholar 

  • Chmielarz, L., Kuśtrowski, P., Dziembaj, R., Cool, P., & Vansant, E. F. (2007). Selective catalytic reduction of NO with ammonia over porous clay heterostructures modified with copper and iron species. Catalysis Today, 119, 181–186. DOI: 10.1016/j.cattod.2006.08.017.

    CAS  Article  Google Scholar 

  • Chmielarz, L., Kuśtrowski, P., Piwowarska, Z., Dudek, B., Gil, B., & Michalik, M. (2009a). Montmorillonite, vermiculite and saponite based porous clay heterostructures modified with transition metals as catalysts for the DeNOx process. Applied Catalysis B: Environmental, 88, 331–340. DOI: 10.1016/j.apcatb.2008.11.001.

    CAS  Article  Google Scholar 

  • Chmielarz, L., Piwowarska, Z., Kuśtrowski, P., Gil, B., Adamski, A., Dudek, B., & Michalik, M. (2009b). Porous clay heterostructures (PCHs) intercalated with silica-titania pillars and modified with transition metals as catalysts for the DeNOx process. Applied Catalysis B: Environmental, 91, 449–459. DOI: 10.1016/j.apcatb.2009.06.014.

    CAS  Article  Google Scholar 

  • Chmielarz, L., Wojciechowska, M., Rutkowska, M., Adamski, A., Węegrzyn, A., Kowalczyk, A., Dudek, B., Boroń, P., Michalik, M., & Matusiewicz, A. (2012). Acid-activated vermiculites as catalysts of the DeNOx process. Catalysis Today, 191, 25–31. DOI: 10.1016/j.cattod.2012.03.042.

    CAS  Article  Google Scholar 

  • Chmielarz, L., Jabłońska, M., Strumiński, A., Piwowarska, Z., Węgrzyn, A., Witkowski, S., & Michalik, M. (2013). Selective catalytic oxidation of ammonia to nitrogen over Mg-Al, Cu-Mg-Al and Fe-Mg-Al mixed metal oxides doped with noble metals. Applied Catalysis B: Environmental, 130–131, 152–162. DOI: 10.1016/j.apcatb.2012.11.004.

    Article  Google Scholar 

  • Ferella, F., Stoehr, J., De Michelis, I., & Hornung, A. (2013). Zirconia and alumina based catalysts for steam reforming of naphthalene. Fuel, 105, 614–629. DOI: 10.1016/j.fuel.2012.09.052.

    CAS  Article  Google Scholar 

  • Galarneau, A., Barodawalla, A., & Pinnavaia, T. J. (1995). Porous clay heterostructures formed by gallery-templated synthesis. Nature, 374, 529–531. DOI: 10.1038/374529a0.

    CAS  Article  Google Scholar 

  • Gregg, S. J., & Sing, K. S. W. (1982). Adsorption surface area and porosity. London, UK: Academic Press.

    Google Scholar 

  • He, H. P., Frost, R. L., Bostrom, T., Yuan, P., Duong, L., Yang, D., Yunfel, X. F., & Kloprogge, J. T. (2006). Changes in the morphology of organoclays with HDTMA+ surfactant loading. Applied Clay Science, 31, 262–271. DOI: 10.1016/j.clay.2005.10.011.

    CAS  Article  Google Scholar 

  • Ismagilov, Z. R., Yashnik, S. A., Anufrienko, V. F., Larina, T. V., Vasenin, N. T., Bulgakov, N. N., Vosel, S. V., & Tsykoza, L. T. (2004). Linear nanoscale clusters of CuO in Cu-ZSM-5 catalysts. Applied Surface Science, 226, 88–93. DOI: 10.1016/j.apsusc.2003.11.035.

    CAS  Article  Google Scholar 

  • Iwamoto, M., Yahiro, H., Mine, Y., & Kagawa, S. (1989). Excessively copper ion-exchanged ZSM-5 zeolites as highly active catalysts for direct decomposition of nitrogen monoxide. Chemistry Letters, 18, 213–216. DOI: 10.1246/cl.1989.213.

    Article  Google Scholar 

  • Iwamoto, M., Yahiro, H., Mizuno, N., Zhang, W. X., Mine, Y., Furukawa, H., & Kagawa, S. (1992). Removal of nitrogen monoxide through a novel catalytic process. 2. Infrared study on surface reaction of nitrogen monoxide adsorbed on copper ion-exchanged ZSM-5 zeolites. The Journal of Physical Chemistry, 96, 9360–9366. DOI: 10.1021/j100202a055.

    CAS  Article  Google Scholar 

  • Komadel, P., Madejová, J., Janek, M., Gates, W. P., Kirkpartick, R. J., & Stucki, J.W. (1996). Dissolution of hectorite in inorganic acids. Clays and Clay Minerals, 44, 228–236. DOI: 10.1346/ccmn.1996.0440208.

    CAS  Article  Google Scholar 

  • Komatsu, T., Nunokawa, M., Moon, I. S., Takahara, T., Namba, S., & Yashima, T. (1994). Kinetic studies of reduction of nitric oxide with ammonia on Cu2+-exchanged zeolites. Journal of Catalysis, 148, 427–437. DOI: 10.1006/jcat.1994.1229.

    CAS  Article  Google Scholar 

  • Lei, G. D., Adelman, B. J., Sárkány, J., & Sachtler, W. M. H. (1995). Identification of copper(II) and copper(I) and their interconversion in Cu/ZSM-5 De-NOx catalysts. Applied Catalysis B: Environmental, 5, 245–256. DOI: 10.1016/0926-3373(94)00043-3.

    CAS  Article  Google Scholar 

  • Mendes, F. M. T., & Schmal, M. (1997). The cyclohexanol dehydrogenation on Rh-Cu/Al2O3 catalysts part 1. Characterization of the catalyst. Applied Catalysis A: General, 151, 393–408. DOI: 10.1016/s0926-860x(96)00316-x.

    CAS  Article  Google Scholar 

  • Pérez-Ramírez, J., Kumar, M. S., & Brückner, A. (2004). Reduction of N2O with CO over FeMFI zeolites: influence of the preparation method on the iron species and catalytic behavior. Journal of Catalysis, 223, 13–27. DOI: 10.1016/j.jcat.2004.01.007.

    Article  Google Scholar 

  • Ravichandran, J., & Sivasankar, B. (1997). Properties and catalytic activity of acid-modified montmorillonite and vermiculite. Clays and Clay Minerals, 45, 854–858. DOI: 10.1346/ccmn.1997.0450609.

    CAS  Article  Google Scholar 

  • Slade, P. G., & Gates, W. P. (2004). The swelling of HDTMA smectites as influenced by their preparation and layer charges. Applied Clay Science, 25, 93–101. DOI: 10.1016/j.clay.2003.07.007.

    CAS  Article  Google Scholar 

  • Steinbach, S., Grünwald, J., Glückert, U., & Sattelmayer, T. (2007). Characterization of structured hydrolysis catalysts for urea-SCR. Topics in Catalysis, 42–43, 99–103. DOI: 10.1007/s11244-007-0159-1.

    Article  Google Scholar 

  • Valyon, J., & Hall, W. K. (1993). Studies of the surface species formed from nitric oxide on copper zeolites. The Journal of Physical Chemistry, 97, 1204–1212. DOI: 10.1021/j100108a016.

    CAS  Article  Google Scholar 

  • Vicente, M. A., Bañares-Muñoz, M. A., Gandia, L. M., & Gil, A. (2001). On the structural changes of a saponite intercalated with various polycations upon thermal treatments. Applied Catalysis A: General, 217, 191–204. DOI: 10.1016/s0926-860x(01)00603-2.

    CAS  Article  Google Scholar 

  • Wójtowicz, M. A., Pels, J. R., & Moulijn, J. A. (1993). Combustion of coal as a source of N2O emission. Fuel Processing Technology, 34, 1–71. DOI: 10.1016/0378-3820(93)90061-8.

    Article  Google Scholar 

  • Wypych, F., Adad, L. B., Mattoso, N., Marangon, A. A. S., & Schreiner, W. H. (2005). Synthesis and characterization of disordered layered silica obtained by selective leaching of octahedral sheets from chrysotile and phlogopite structures. Journal of Colloid and Interface Science, 283, 107–112. DOI: 10.1016/j.jcis.2004.08.139.

    CAS  Article  Google Scholar 

  • Xu, S. H., & Boyd, S. A. (1995). Cationic surfactant adsorption by swelling and nonswelling layer silicates. Langmuir, 11, 2508–2514. DOI: 10.1021/la00007a033.

    CAS  Article  Google Scholar 

  • Zhu, R. L., Zhu, L. Z., Zhu, J. X., & Xu, L. H. (2008). Structure of cetyltrimethylammonium intercalated hydrobiotite. Applied Clay Science, 42, 224–231. DOI: 10.1016/j.clay.2007.12.004.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucjan Chmielarz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chmielarz, L., Kowalczyk, A., Wojciechowska, M. et al. Montmorillonite intercalated with SiO2, SiO2-Al2O3 or SiO2-TiO2 pillars by surfactant-directed method as catalytic supports for DeNOx process. Chem. Pap. 68, 1219–1227 (2014). https://doi.org/10.2478/s11696-013-0463-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0463-0

Keywords

  • montmorillonite
  • intercalation
  • surfactant-directed method
  • porous clay heterostructures (PCHs)
  • selective catalytic reduction (DeNOx)
  • nitric oxide