Skip to main content

Advertisement

Log in

Analytical protocol for investigation of zinc speciation in plant tissue

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A specific procedure is proposed for investigating the chemical speciation of zinc (Zn) in plant tissues, viz., the extraction of Zn compounds from Plantago lanceolata L. followed by the chromatographic separation and inductively coupled plasma mass spectrometry (ICP-MS) identification of these compounds. In order to separate the Zn compounds, both size-exclusion (SEC) and ionexchange liquid chromatography (IC) were used in direct sequential and reverse sequential modes. In the direct sequential mode, the entire extract undergoes SEC separation and then the individual fractions are injected onto the ion-exchange column. The molecular size distribution is evaluated by SEC coupled on-line to the UV detector. In the reverse sequential mode, the entire extract undergoes the ion-exchange chromatographic separation and then the individual fractions are injected onto the size-exclusion column. The identification of Zn incorporated into the compounds is further performed using ICP-MS. This procedure is particularly useful in speciation studies when identification of the individual components of the element is problematic due to the lack of suitable standard substances, as is the case for Zn compounds. The proposed procedure facilitates assignment of the signals to the individual components of the fractions for both types of chromatography, thus rendering the chemical speciation of Zn possible when the lack of suitable standard substances impedes the identification of individual components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alloway, B. J. (2008). Zinc in soils and crop nutrition (2nd ed.). Brussels, Belgium/Paris, France: IZA/IFA.

    Google Scholar 

  • Baranowska-Morek, A. (2003). Roślinne mechanizmy tolerancji na działanie metali ciężkich. Kosmos: Problemy Nauk Biologicznych, 52, 283–298. (in Polish)

    CAS  Google Scholar 

  • Bulska, E., Wysocka, I. A., Wierzbicka, M. H., Proost, K., Janssens, K., & Falkenberg, G. (2006). In vivo investigation of the distribution and the local speciation of selenium in Allium cepa L. by means of microscopic X-ray absorption nearedge structure spectroscopy and confocal microscopic X-ray fluorescence analysis. Analytical Chemistry, 78, 7616–7624. DOI: 10.1021/ac060380s.

    Article  Google Scholar 

  • Chang, S. H., Wei, Y. L., & Wang, H. P. (2007). Zinc species distribution in EDTA-extract residues of zinc-contaminated soil. Journal of Electron Spectroscopy and Related Phenomena, 156–158, 220–223. DOI: 10.1016/j.elspec.2006.12.008.

    Article  Google Scholar 

  • Chardonnens, A. N., Ten Bookum, W. M., Vellinga, S., Schat, H., Verkleij, J. A. C., & Ernst, W. H. O. (1999). Allocation patterns of zinc and cadmium in heavy metal tolerant and sensitive Silene vulgaris. Journal of Plant Physiology, 155, 778–787. DOI: 10.1016/s0176-1617(99)80096-0.

    Article  CAS  Google Scholar 

  • Chen, R., Smith, B.W., Winefordner, J. D., Tu, M. S., Kertulis, G., & Ma, L. Q. (2004). Arsenic speciation in Chinese brake fern by ion-pair high-performance liquid chromatography-inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 504, 199–207. DOI: 10.1016/j.aca.2003.10.042.

    Article  CAS  Google Scholar 

  • Harmens, H., Gusmǎo, N. G. C. P. B., Den Hartog, P. R., Verkleij, A. J. A. C., & Ernst, W. H. O. (1993). Uptake and transport of zinc in zinc-sensitive and zinc tolerant Silene vulgaris. Journal of Plant Physiology, 141, 309–315. DOI: 10.1016/s0176-1617(11)81740-2.

    Article  CAS  Google Scholar 

  • Ponce de León, C. A., Montes-Bayón, M., & Caruso, J. A. (2002), Elemental speciation by chromatographic separation with inductively coupled plasma mass spectrometry detection. Journal of Chromatography A, 974, 1–21. DOI: 10.1016/s0021-9673(02)01239-6.

    Article  Google Scholar 

  • Sarret, G., Willems, G., Isaure, M. P., Marcus, M. A., Fakra, S. C., Frérot, H., Pairis, S., Geoffroy, N., Manceau, A., & Saumitou-Laprade, P. (2009). Zinc distribution and speciation in Arabidopsis halleri × Arabidopsis lyrata progenies presenting various zinc accumulation capacities. New Phytologist, 184, 581–595. DOI: 10.1111/j.1469-8137.2009.02996.x.

    Article  CAS  Google Scholar 

  • Straczek, A., Sarret, G., Manceau, A., Hinsinger, P., Geoffroy, N., & Jaillard, B. (2008). Zinc distribution and speciation in roots of various genotypes of tobacco exposed to Zn. Environmental and Experimental Botany, 63, 80–90. DOI: 10.1016/j.envexpbot.2007.10.034.

    Article  CAS  Google Scholar 

  • Szpunar, J., & Lobinski, R. (1999). Species-selective analysis for metal-biomacromolecular complexes using hyphenated techniques. Pure and Applied Chemistry, 71, 899–918. DOI: 10.1351/pac199971050899.

    Article  CAS  Google Scholar 

  • Szpunar, J., Pellerin, P., Makarov, A., Doco, T., Williams, P., & Łobiński, R. (1999). Speciation of metal-carbohydrate complexes in fruit and vegetable samples by size-exclusion HPLC-ICP-MS. Journal of Analytical Atomic Spectrometry, 14, 639–644. DOI: 10.1039/a808231f.

    Article  CAS  Google Scholar 

  • Vulkan, R., Mingelgrin, U., Ben-Asher, J., & Frenkel, H. (2002). Copper and zinc speciation in the solution of a soil-sludge mixture. Journal of Environmental Quality, 31, 193–203. DOI: 10.2134/jeq2002.0193.

    Article  CAS  Google Scholar 

  • Wierzbicka, M., Szarek-Łukaszewska, G., & Grodzińska, K. (2004). Highly toxic thallium in plants from the vicinity of Olkusz (Poland). Ecotoxicology and Environmental Safety, 59, 84–88. DOI: 10.1016/j.ecoenv.2003.12.009.

    Article  CAS  Google Scholar 

  • Wrobel, K., Wrobel, K., Kannamkumarath, S. S., Caruso, J. A., Wysocka, I. A., Bulska, E., Swiatek, J., & Wierzbicka, M. (2004). HPLC-ICP-MS speciation of selenium in enriched onion leaves — a potencial dietary sources of Semethyloselenocysteine. Food Chemistry, 86, 617–623. DOI: 10.1016/j.foodchem.2003.11.005.

    Article  CAS  Google Scholar 

  • Wuilloud, R. G., Kannamkumarath, S. S., & Caruso, J. A. (2004). Speciation of nickel, copper, zinc, and manganese in different edible nuts: a comparative study of molecular size distribution by SEC-UV-ICP-MS. Analytical and Bioanalytical Chemistry, 379, 495–503. DOI: 10.1007/s00216-004-2592-3.

    Article  CAS  Google Scholar 

  • Zhao, F. J., Lombi, E., Breedon, T., & McGrath, S. P. (2000). Zn hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant, Cell and Environment, 23, 507–514. DOI: 10.1046/j.1365-3040.2000.00569.x.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Karasiński.

Additional information

Presented at the XXth Slovak-Czech Spectroscopic Conference, Tatranská Lomnica, Slovakia, 7–12 October 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karasiński, J., Cegiełkowska, W., Wojciechowski, M. et al. Analytical protocol for investigation of zinc speciation in plant tissue. Chem. Pap. 68, 291–299 (2014). https://doi.org/10.2478/s11696-013-0460-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0460-3

Keywords

Navigation