Skip to main content
Log in

Determination of limiting current density for different electrodialysis modules

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Limiting current density of ammonium nitrate solution in laboratory-, pilot-, and industrial-scale electrodialysis modules were determined to provide a method for the prediction of the limiting current density of ammonium nitrate solutions at any conditions. The current-voltage curve was measured in each case and the limiting current density was evaluated using the dependence of the derivative, dI/dU, on the electric current, I. The limiting current was determined as a current at which the derivative dI/dU equals zero. The developed method enables not only the prediction of the limiting current density but the limiting cut and limiting flux can be determined concurrently at any linear flow velocity of the diluate and inlet ammonium nitrate concentration. It could help to prevent working in the overlimiting region and to avoid undesirable decrease of current efficiency and pH changes. The limiting cut is the maximal cut that can be obtained at certain linear flow velocity and module geometry irrespective of the inlet ammonium nitrate concentration and it is very useful information when designing a new electrodialysis unit for specific application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barragán, V. M., & Ruíz-Bauzá, C. (1998). Current-voltage curves for ion-exchange membranes: A method for determining the limiting current density. Journal of Colloid and Interface Science, 205, 365–373. DOI: 10.1006/jcis.1998.5649.

    Article  Google Scholar 

  • Davis, T. A., Grebenyuk, V., & Grebenyuk, O. (2001). Electromembrane processes. In S. Pereira Nunes, & K. V. Peinemann (Eds.), Membrane technology: in the chemical industry (pp. 222–267). Weinheim, Germany: Wiley-VCH. DOI: 10.1002/3527600388.ch12.

    Chapter  Google Scholar 

  • Gonçalves, F., Fernandes, C., Cameira dos Santos, P., & de Pinho, M. N. (2003). Wine tartaric stabilization by electrodialysis and its assessment by the saturation temperature. Journal of Food Engineering, 59, 229–235. DOI: 10.1016/s0260-8774(02)00462-4.

    Article  Google Scholar 

  • Jaime Ferrer, J. S., Laborie, S., Durand, G., & Rakib, M. (2006). Formic acid regeneration by electromembrane processes. Journal of Membrane Science, 280, 509–516. DOI: 10.1016/j.memsci.2006.02.012.

    Article  Google Scholar 

  • Kaláb, J., & Palaty, Z. (2012). Electrodialysis of oxalic acid: batch process modeling. Chemical Papers, 66, 1118–1123. DOI: 10.2478/s11696-012-0232-5.

    Article  Google Scholar 

  • Kinčl, J., Bobák, M., Diblíková, L., & Čurda, L. (2012). Characteristics of demineralization of salty whey. In Book of Abstracts of ELMEMPRO 2012, August 26–29, 2012 (pp. 62–63). Česk’y Krumlov, Czech Republic.

    Google Scholar 

  • Krol, J. J., Wessling, M., & Strathmann, H. (1999). Concentration polarization with monopolar ion exchange membranes: current-voltage curves and water dissociation. Journal of Membrane Science, 162, 145–154. DOI: 10.1016/s0376-7388(99)00133-7.

    Article  CAS  Google Scholar 

  • Lee, H. J., Strathmann, H., & Moon, S. H. (2006). Determination of the limiting current density in electrodialysis desalination as an empirical function of linear velocity. Desalination, 190, 43–50. DOI: 10.1016/j.desal.2005.08.004.

    Article  CAS  Google Scholar 

  • Machuča, L., Tvrzník, D., & Kysela, V. (2012). Conception of electromembrane processes for reuse of waste water containing ammonium nitrate. Waste Forum, 4, 222–228. (in Czech)

    Google Scholar 

  • Marek, J. (2012). Zkušenosti z úpravy vody pomocí membránovych technologií. Energie kolem nás, 2012(4), 22–24.

    Google Scholar 

  • Meng, H., Deng, D. Y., Chen, S. J., & Zhang, G. J. (2005). A new method to determine the optimal operating current (I lim’) in the electrodialysis process. Desalination, 181, 101–108. DOI: 10.1016/j.desal.2005.01.014.

    Article  CAS  Google Scholar 

  • Mulder, M. (1996). Basic principles of membrane technology. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Nikonenko, V. V., Pismenskaya, N. D., Istoshin, A. G., Zabolotsky, V. I., & Shudrenko, A. A. (2008). Description of mass transfer characteristics of ED and EDI apparatuses by using the similarity theory and compartmentation method. Chemical Engineering and Processing: Process Intensification, 47, 1118–1127. DOI: 10.1016/j.cep.2007.12.005.

    Article  CAS  Google Scholar 

  • Ponce-de-León, C., & Field, R. W. (2000). On the determination of limiting current density from uncertain data. Journal of Applied Electrochemistry, 30, 1087–1090. DOI: 10.1023/a:1004015617522.

    Article  Google Scholar 

  • Ponce-de-León, C., Low, C. T. J., Kear, G., & Walsh, F. C. (2007). Strategies for the determination of the convectivediffusion limiting current from steady state linear sweep voltammetry. Journal of Applied Electrochemistry, 37, 1261–1270. DOI: 10.1007/s10800-007-9392-3.

    Article  Google Scholar 

  • Rapp, H. J., & Pfromm, P. H. (1998). Electrodialysis for chloride removal from the chemical recovery cycle of a Kraft pulp mill. Journal of Membrane Science, 146, 249–261. DOI: 10.1016/s0376-7388(98)00122-7.

    Article  CAS  Google Scholar 

  • Strathmann, H. (1991). Electrodialysis. In R. W. Baker (Ed.), Membrane separation systems (pp. 396–448). Park Ridge, NJ, USA: Noyes Data Corporation.

    Google Scholar 

  • Šímová, H., Kysela, V., & Černín, A. (2010). Demineralization of natural sweet whey by electrodialysis at pilot-plant scale. Desalination and Water Treatment, 14, 170–173. DOI: 10.5004/dwt.2010.1023.

    Article  Google Scholar 

  • Valerdi-Pérez, R., & Ibáñez-Mengual, J. A. (2001). Current—voltage curves for an electrodialysis reversal pilot plant: determination of limiting currents. Desalination, 141, 23–37. DOI: 10.1016/s0011-9164(01)00386-1.

    Article  Google Scholar 

  • Vera, E., Ruales, J., Dornier, M., Sandeaux, J., Sandeaux, R., & Pourcelly, G. (2003). Deacidification of clarified passion fruit juice using different configurations of electrodialysis. Journal of Chemical Technology and Biotechnology, 78, 918–925. DOI: 10.1002/jctb.827.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natália Káňavová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Káňavová, N., Machuča, L. & Tvrzník, D. Determination of limiting current density for different electrodialysis modules. Chem. Pap. 68, 324–329 (2014). https://doi.org/10.2478/s11696-013-0456-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0456-z

Keywords

Navigation