Skip to main content

Advertisement

Log in

Modeling of supercritical fluid extraction of flavonoids from Calycopteris floribunda leaves

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The aim of this study was to obtain flavonoids extracts from Calycopteris floribunda leaves using supercritical fluid extraction (SFE) with CO2 and a co-solvent. Pachypodol, a potential anticancer drug lead compound separated from the extracts, was examined. Classical organic solvent extraction (CE) with ethanol was performed to evaluate the high pressure method. HPLC analysis was introduced to interpret the differences between SFE and CE extracts in terms of antioxidant activity and the concentration of pachypodol. SFE kinetics and mathematical modeling of the overall extraction curves (OEC) were investigated. Evaluation of the models against experimental data showed that the Sovová model performs the best. The supercritical fluid extraction process was optimized using a central composite design (CCD), where temperature and pressure were adjusted. The optimal conditions of SFE were: pressure of 30 MPa and temperature of 35°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali, H. A., Chowdhury, A. K. A., Rahman, A. K. M., Borkowski, T., Nahar, L., & Sarker, S. D. (2008). Pachypodol, a flavonol from the leaves of Calycopteris floribunda, inhibits the growth of CaCo 2 colon cancer cell line in vitro. Phytotherapy Research, 22, 1684–1687. DOI: 10.1002/ptr.2539.

    Article  CAS  Google Scholar 

  • Andrade, K. S., Gonçalvez, R. T., Maraschin, M., Ribeiro-do-Valle, R. M., Martínez, J., & Ferreira, S. R. S. (2012). Supercritical fluid extraction from spent coffee grounds and coffee husks: Antioxidant activity and effect of operational variables on extract composition. Talanta, 88, 544–552. DOI: 10.1016/j.talanta.2011.11.031.

    Article  CAS  Google Scholar 

  • Bimakr, M., Rahman, R. A., Ganjloo, A., Taip, F. S., Salleh, L. M., & Sarker, M. Z. I. (2011). Optimization of supercritical carbon dioxide extraction of bioactive flavonoid compounds from spearmint (Mentha spicata L.) leaves by using response surface methodology. Food and Bioprocess Technology, 5, 912–920. DOI: 10.1007/s11947-010-0504-4.

    Article  CAS  Google Scholar 

  • Chafer, A., Fornari, T., Berna, A., & Stateva, R. P. (2004). Solubility of quercetin in supercritical CO2 + ethanol as a modifier: measurements and thermodynamic modelling. The Journal of Supercritical Fluids, 32, 89–96. DOI: 10.1016/j.supflu.2004.02.005.

    Article  CAS  Google Scholar 

  • Chiu, K. L., Cheng, Y. C., Chen, J. H., Chang, C. J., & Yang, P. W. (2002). Supercritical fluids extraction of Ginkgo ginkgolides and flavonoids. The Journal of Supercritical Fluids, 24, 77–87. DOI: 10.1016/s0896-8446(02)00014-1.

    Article  CAS  Google Scholar 

  • Crank, J. (1975). The mathematics of diffusion (2nd ed.). Oxford, UK: Clarendon Press.

    Google Scholar 

  • de Lucas, A., Gracia, I., Rincón, J., & García, M. T. (2007). Solubility determination and model prediction of olive husk oil in supercritical carbon dioxide and cosolvents. Industrial & Engineering Chemistry Research, 46, 5061–5066. DOI: 10.1021/ie061153j.

    Article  CAS  Google Scholar 

  • Huang, Z., Yang, M. J., Liu, S. F., & Ma, Q. (2011). Supercritical carbon dioxide extraction of Baizhu: Experiments and modeling. The Journal of Supercritical Fluids, 58, 31–39. DOI: 10.1016/j.supflu.2011.05.008.

    Article  CAS  Google Scholar 

  • Liu, J. J., Yang, D. L., Zhang, Y., Yuan, Y., Cao, F. X., Zhao, J. M., & Peng, X. B. (2009). Chemical component and antimicrobial activity of volatile oil of Calycopteris floribunda. Journal of Central South Universtiy of Technology, 16, 931–935. DOI: 10.1007/s11771-009-0155-7.

    Article  CAS  Google Scholar 

  • Kirthikar, K. R., & Basu, B. D. (2001). Indian medicinal plants (Vol. 5). Uttaranchal, India: Oriental Enterprises.

    Google Scholar 

  • Kruijtzer, C. M. F., Beijnen, J. H., Rosing, H., ten Bokkel Huinink, W. W., Schot, M., Jewell, R. C., Paul, E. M., & Schellens, J. H. M. (2002). Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. Journal of Clinical Oncology, 20, 2943–2950. DOI: 10.1200/jco.2002.12.116.

    Article  CAS  Google Scholar 

  • Leitão, N. C. M. C. S., Prado, G. H. C., Veggi, P. C., Meireles, M. A. A., & Pereira, C. G. (2013). Anacardium occidentale L. leaves extraction via SFE: Global yields, extraction kinetics, mathematical modeling and economic evaluation. The Journal of Supercritical Fluids, 78, 114–123. DOI: 10.1016/j.supflu.2013.03.024.

    Article  CAS  Google Scholar 

  • Lewin, G., Shridhar, N. B., Aubert, G., Thoret, S., Dubois, J., & Cresteil, T. (2011). Synthesis of antiproliferative flavones from calycopterin, major flavonoid of Calycopteris floribunda Lamk. Bioorganic & Medicinal Chemistry, 19(1), 186–196. DOI: 10.1016/j.bmc.2010.11.035.

    Article  CAS  Google Scholar 

  • Martínez, J., Monteiro, A. R., Rosa, P. T. V., Marques, M. O. M., & Meireles, M. A. A. (2003). Multicomponent model to describe extraction of ginger oleoresin with supercritical carbon dioxide. Industrial & Engineering Chemistry Research, 42, 1057–1063. DOI: 10.1021/ie020694f.

    Article  CAS  Google Scholar 

  • Mayer, R. (1999). Calycopterones and calyflorenones, novel biflavonoids from Calycopteris floribunda. Journal of Natural Products, 62, 1274–1278. DOI: 10.1021/np990182e.

    Article  CAS  Google Scholar 

  • Mayer, R. (2004). Five biflavonoids from Calycopteris floribunda (Combretaceae). Phytochemistry, 65, 593–601. DOI: 10.1016/j.phytochem.2004.01.001.

    Article  CAS  Google Scholar 

  • Pereira, C. G., Marques, M. O. M., Barreto, A. S., Siani, A. C., Fernandes, E. C., & Meireles, M. A. A. (2004). Extraction of indole alkaloids from Tabernaemontana catharinensis using supercritical CO2+ethanol: an evaluation of the process variables and the raw material origin. The Journal of Supercritical Fluids, 30, 51–61. DOI: 10.1016/s0896-8446(03)00112-8.

    Article  CAS  Google Scholar 

  • Pereira, C. G., & Meireles, M. A. A. (2010). Supercritical fluid extraction of bioactive compounds: Fundamentals, applications and economic perspectives. Food and Bioprocess Technology, 3, 340–372. DOI: 10.1007/s11947-009-0263-2.

    Article  CAS  Google Scholar 

  • Pick, A., Müller, H., Mayer, R., Haenisch, B., Pajeva, I. K., Weigt, M., Bönisch, H., Müller, C. E., & Wiese, M. (2011). Structure-activity relationships of flavonoids as inhibitors of breast cancer resistance protein (BCRP). Bioorganic & Medicinal Chemistry, 19, 2090–2102. DOI: 10.1016/j.bmc.2010.12.043.

    Article  CAS  Google Scholar 

  • Rodriguez, E., Vander Velde, G., Mabry, T. J., Subramanian, S. S., & Nair, A. G. R. (1972). Structure of calycopterin. Phytochemistry, 11, 2311–2312. DOI: 10.1016/s0031-9422(00)88396-x.

    Article  CAS  Google Scholar 

  • Sovová, H. (1994). Rate of the vegetable oil extraction with supercritical CO2—I. Modelling of extraction curves. Chemical Engineering Science, 49, 409–414. DOI: 10.1016/0009-2509(94)87012-8.

    Article  Google Scholar 

  • Versiani, M. A., Diyabalanage, T., Ratnayake, R., Henrich, C. J., Bates, S. E., McMahon, J. B., & Gustafson, K. R. (2011). Flavonoids from eight tropical plant species that inhibit the multidrug resistance transporter ABCG2. Journal of Natural Products, 74, 262–266. DOI: 10.1021/np100797y.

    Article  CAS  Google Scholar 

  • Wall, M. E., Wani, M. C., Fullas, F., Oswald, J. B., Brown, D. M., Santisuk, T., Reutrakul, V., McPhail, A. T., Farnsworth, N. R., Pezzuto, J. M., Kinghorn, A. D., & Besterman, J. M. (1994). Plant antitumor agents. 31.1. The calycopterones, a new class of biflavonoids with novel cytotoxicity in a diverse panel of human tumor cell lines. Journal of Medicinal Chemistry, 37, 1465–1470. DOI: 10.1021/jm00036a012.

    Article  CAS  Google Scholar 

  • Wang, X. J., Liu, J. J., Yuan, Y., & Li, X. (2009). Extracting technology of volatile oil from leaf of Calycopteris floribunda by steam distillation. Applied Chemical Industry, 38, 64–65.

    Google Scholar 

  • Wang, X., Liu, J., Li, X., & Ren, N. (2008). NaNO2-Al(NO3)3 spectrophotometric determination of total flavonoids in Calycopteris floribunda leaves. Guangdong Chemical Industry, 2008(11), 127–130.

    Google Scholar 

  • Yang, C., Xu, Y. R., & Yao, W. X. (2002). Extraction of pharmaceutical components from Ginkgo biloba leaves using supercritical carbon dioxide. Journal of Agricultural and Food Chemistry, 50, 846–849. DOI: 10.1021/jf010945f.

    Article  CAS  Google Scholar 

  • Yusuf, M., Chowdhury, J. U., Wahab, M. A., & Begum, J. (1994). Medicinal plants of Bangladesh. Dhaka, Bangladesh: Bangladesh Council of Scientific and Industrial Research.

    Google Scholar 

  • Zheng, W., & Wang, S. Y. (2001). Antioxidant activity and phenolic compounds in selected herbs. Journal of Agricultural and Food Chemistry, 49, 5165–5170. DOI: 10.1021/jf010697n.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Jia Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Yang, DL., Liu, JJ. et al. Modeling of supercritical fluid extraction of flavonoids from Calycopteris floribunda leaves. Chem. Pap. 68, 316–323 (2014). https://doi.org/10.2478/s11696-013-0451-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0451-4

Keywords

Navigation