Skip to main content


Log in

Influence of operating conditions on performance of ceramic membrane used for water treatment

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript


The removal of natural organic matter (NOM) is a critical aspect of potable water treatment because NOM compounds are precursors of harmful disinfection by-products, hence should be removed from water intended for human consumption. Ultrafiltration using ceramic membranes can be a suitable process for removal of natural substances. Previously reported experiments were dedicated to evaluating the suitability of ultrafiltration through ceramic membrane for water treatment with a focus on the separation of natural organic matter. The effects of the membrane operating time and linear flow velocity on transport and separation properties were also examined. The experiments, using a 7-channel 300 kDa MWCO ceramic membrane, were carried out with model solutions and surface water at trans-membrane pressure of 0.2–0.5 MPa. The results revealed that a loose UF ceramic membrane can successfully eliminate natural organic matter from water. The permeability of the membrane was strongly affected by the composition of the feed stream, i.e. the permeate flux decreased with an increase in the NOM concentration. The permeate flux also decreased over the period of the operation, while this parameter did not influence the effectiveness of separation, i.e. the removal of NOM. It was observed that the increased cross-flow velocity resulted in the decrease in the membrane-fouling intensity and slightly improved the retention of contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  • Calvo, J. I., Bottino, A., Capannelli, G.,& Hernández, A. (2008). Pore size distribution of ceramic UF membranes by liquid-liquid displacement porosimetry. Journal of Membrane Science, 310, 531–538. DOI:10.1016/j.memsci.2007.11.035.

    Article  CAS  Google Scholar 

  • Grefte, A., Dignum, M., Cornelissen, E. R.,& Rietveld, L. C. (2013). Natural organic matter removal by ion exchange at different positions in the drinking water treatment lane. Drinking Water Engineering and Science, 6, 1–10. DOI:10.5194/dwes-6-1-2013.

    Article  CAS  Google Scholar 

  • Guerra, K., Pellegrino, J.,& Drewes, J. E. (2012). Impact of operating conditions on permeate flux and process economics for cross flow ceramic membrane ultrafiltration of surface water. Separation and Purification Technology, 87, 47–53. DOI:10.1016/j.seppur.2011.11.019.

    Article  CAS  Google Scholar 

  • Hofs, B., Ogier, J., Vries, D., Beerendonk, E. F.,& Cornelissen, E. R. (2011). Comparison of ceramic and polymeric membrane permeability and fouling using surface water. Separation and Purification Technology, 79, 365–374. DOI:10.1016/j.seppur.2011.03.025.

    Article  CAS  Google Scholar 

  • Jaouadi, M., Amdouni, N.,& Duclaux, L. (2012). Characteristics of natural organic matter extracted from the waters of Medjerda dam (Tunisia). Desalination, 305, 64–71. DOI:10.1016/j.desal.2012.07.008.

    Article  CAS  Google Scholar 

  • Kabsch-Korbutowicz, M.,& Urbanowska, A. (2012). Effects of ion-exchange for NOM removal in water treatment with ceramic membranes ultrafiltration. Membrane Water Treatment, 3, 211–219.

    Article  Google Scholar 

  • Kanan, A.,& Karanfil, T. (2011). Formation of disinfection by-products in indoor swimming pool water: The contribution from filling water natural organic matter and swimmer body fluids. Water Research, 45, 926–932. DOI:10.1016/j.watres.2010.09.031.

    Article  CAS  Google Scholar 

  • Kuca, M.,& Szaniawska, D. (2009). Application of microfiltration and ceramic membranes for treatment of salted aqueous effluents from fish processing. Desalination, 241, 227–235. DOI:10.1016/j.desal.2008.01.068.

    Article  CAS  Google Scholar 

  • Lee, S. Y.,& Cho, J. W. (2004). Comparison of ceramic and polymeric membranes for natural organic matter (NOM) removal. Desalination, 160, 223–232. DOI: 10.1016/s0011-9164(04)90025-2.

    Article  CAS  Google Scholar 

  • Liu, H. C., Feng, S. P., Du, X. L., Zhang, N. N.,& Li, Y. L. (2011). Comparison of three sorbents for organic pollutant removal in drinking water. Energy Procedia, 5, 985–990. DOI:10.1016/j.egypro.2011.03.174.

    Article  CAS  Google Scholar 

  • Matilainen, A., Gjessing, E. T., Lahtinen, T., Hed, L., Bhatnagar, A.,& Sillanpää, M. (2011). An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere, 83, 1431–1442. DOI: 10.1016/j.chemosphere.2011.01.018.

    Article  CAS  Google Scholar 

  • Polish Ministry of Health (2007). 417. The Minister of Health order on March 29, 2007 on the quality of water intended for human consumption. Dziennik Ustaw, 61, 3726–3743. (in Polish)

    Google Scholar 

  • Polish Ministry of Health (2010). 466. The Minister of Health order on April 20, 2010 on the quality of water intended for human consumption. Dziennik Ustaw, 72, 6333–6342. (in Polish)

    Google Scholar 

  • Rao, P. H., Lo, I. M. C., Yin, K.,& Tang, S. C. N. (2011). Removal of natural organic matter by cationic hydrogel with magnetic properties. Journal of Environmental Management, 92, 1690–1695. DOI:10.1016/j.jenvman.2011.01.028.

    Article  CAS  Google Scholar 

  • Raspati, G. S., Høvik, H. N.,& Leiknes, T. O. (2011). Preferential fouling of natural organic matter (NOM) fractions in submerged low-pressure membrane filtration. Desalination and Water Treatment, 34, 416–422. DOI:10.5004/dwt.2011.2901.

    Article  CAS  Google Scholar 

  • Sentana, I., Puche, R. D. S., Sentana, E.,& Prats, D. (2011). Reduction of chlorination byproducts in surface water using ceramic nanofiltration membranes. Desalination, 277, 147–155. DOI:10.1016/j.desal.2011.04.016.

    Article  CAS  Google Scholar 

  • Sobsey, M. D., Stauber, C. E., Casanova, L. M., Brown, J. M.,& Elliot, M. A. (2008). Point of use household drinking water filtration: A practical, effective solution for providing sustained access to safe drinking water in the developing world. Environmental Science & Technology, 42, 4261–4267. DOI: 10.1021/es702746n.

    Article  CAS  Google Scholar 

  • Velten, S., Knappe, D. R. U., Traber, J., Kaiser, H. P., von Gunten, U., Boller, M.,& Meylan, S. (2011). Characterization of natural organic matter adsorption in granular activated carbon adsorbers. Water Research, 45, 3951–3959. DOI:10.1016/j.watres.2011.04.047.

    Article  CAS  Google Scholar 

  • Xu, J., Chang, C. Y.,& Gao, C. J. (2010). Performance of a ceramic ultrafiltration membrane system in pretreatment to seawater desalination. Separation and Purification Technology, 75, 165–173. DOI:10.1016/j.seppur.2010.07.020.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Agnieszka Urbanowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urbanowska, A., Kabsch-Korbutowicz, M. Influence of operating conditions on performance of ceramic membrane used for water treatment. Chem. Pap. 68, 190–196 (2014).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: