Skip to main content
Log in

1,3-Dipolar cycloaddition between substituted phenyl azide and 2,3-dihydrofuran

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A theoretical study was performed on the 1,3-dipolar cycloaddition between 2,3-dihydrofuran and substituted phenyl azide using Density Functional Theory (DFT) in combination with a 6-311++G(d,p) basis set. The optimum geometries for reactant, transition state and product, as well as the kinetic data, rate constants and reaction constant (ρ) were investigated to rationalise the substitution effects and reaction rates of the 1,3-dipolar cycloaddition process in various solvents. The DFT calculation and Frontier Molecular Orbital (FMO) theory as well as the atomic Fukui indices show that the electron-withdrawing substituents enhance the reaction constant (ρ > 0), especially in polar aprotic solvents. Consequently, small changes in the rate constant of the reaction in various solvents and geometric similarity between reactants and transition state structures were suggested as the early transition state mechanism for electron-withdrawing substituents. In addition, the slope of the Hammett plot and susceptibility of the reaction to electron-withdrawing substituents in various solvents confirmed the mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Argyropoulos, N. G., Mentzafos, D., & Terzis, A. (1990). 1-3-Dipolar cycloaddition reactions of 1,4-benzoquinones with nitrilimines. Journal of Heterocyclic Chemistry, 27, 1983–1988. DOI: 10.1002/jhet.5570270725.

    Article  CAS  Google Scholar 

  • Arshadi, S., Bekhradnia, A. R., Ahmadi, S., Karami, A. R., & Pourbeyram, S. (2011a). New insights on the mechanism of thermal cleavage of unsaturated bicyclic diaziridines: A DFT study. Chinese Journal of Chemistry, 29, 1347–1352. DOI: 10.1002/cjoc.201180253.

    Article  CAS  Google Scholar 

  • Arshadi, S., Bekhradnia, A. R., & Ebrahimnejad, A. (2011b). Feasibility study of hydrogen-bonded nucleic acid base pairs in gas and water phases — a theoretical study. Canadian Journal of Chemistry, 89, 1403–1409. DOI: 10.1139/v11-124.

    Article  CAS  Google Scholar 

  • Aso, M., Ojida, A., Yang, G., Cha, O. J., Osawa, E., & Kanematsu, K. (1993). Furannulation strategy for synthesis of the naturally occurring fused 3-methylfurans: efficient synthesis of evodone and menthofuran and regioselective synthesis of maturone via a Lewis acid catalyzed Diels-Alder reactions. Some comments for its mechanistic aspects. The Journal of Organic Chemistry, 58, 3960–3968. DOI: 10.1021/jo00067a031.

    CAS  Google Scholar 

  • Awad, M. K. (2001). Theoretical investigations of [4π S+2π S] cyclodimerization and stereoselectivity of phthalazin derivatives. Journal of Molecular Structure: THEOCHEM, 542, 139–147. DOI: 10.1016/s0166-1280(00)00831-9.

    Article  CAS  Google Scholar 

  • Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38, 3098–3100. DOI: 10.1103/physreva.38.3098.

    Article  CAS  Google Scholar 

  • Bekhradnia, A. R., & Arshadi, S. (2007). Conformational analysis, infrared, and fluorescence spectra of 1-phenyl-1,2-propandione 1-oxime and related tautomers: Experimental and theoretical study. Monatshefte für Chemie — Chemical Monthly, 138, 725–734. DOI: 10.1007/s00706-007-0657-7.

    Article  CAS  Google Scholar 

  • Bekhradnia, A. R., & Arshadi, S. (2011). Theoretical study of halogen effect in isomerization of 2-halo-[9]-annulen anion at the DFT Level. Chinese Journal of Structural Chemistry, 30, 906–912.

    Google Scholar 

  • Bekhradnia, A. R., & Ebrahimzadeh, M. A. (2012). Theoretical study on some non-selective beta-adrenergic antagonists and correlation to their biologically active configurations. Medicinal Chemistry Research, 21, 2571–2578. DOI: 10.1007/s00044-011-9781-3.

    Article  CAS  Google Scholar 

  • Bultinck, P., Carbó-Dorca, R., & Langenaeker, W. (2003). Negative Fukui functions: New insights based on electronegativity equalization. The Journal of Chemical Physics, 118, 4349–4356. DOI: 10.1063/1.1542875.

    Article  CAS  Google Scholar 

  • Carpenter, J. E., & Weinhold, F. (1988). Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure. Journal of Molecular Structure: THEOCHEM, 169, 41–62. DOI: 10.1016/0166-1280(88)80248-3.

    Article  Google Scholar 

  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, N. J., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., & Fox, D. J. (1998). Gaussian 98 [computer program]. Pittsburgh, PA, USA: Gaussian.

    Google Scholar 

  • Gan, Y., Harwood, L. M., Richards, S. C., Smith, I. E. D., & Vinader, V. (2009). Cycloadditions of chiral carbonyl ylides with imine dipolarophiles as a route to enantiomerically pure α-amino-β-hydroxy acids. Tetrahedron: Asymmetry, 20, 723–725. DOI: 10.1016/j.tetasy.2009.02.029.

    Article  CAS  Google Scholar 

  • Gonzalez, C., & Schlegel, H. B. (1989). An improved algorithm for reaction path following. The Journal of Chemical Physics, 90, 2154–2161. DOI: 10.1063/1.456010.

    Article  CAS  Google Scholar 

  • Gonzalez, C., & Schlegel, H. B. (1990). Reaction path following in mass-weighted internal coordinates. The Journal of Physical Chemistry, 94, 5523–5527. DOI: 10.1021/j100377a021.

    Article  CAS  Google Scholar 

  • Huisgen, R., Grashey, R., Vernon, J. M., & Knuz, R. (1965). Umsetzungen von Δ2-Triazolinen und von Ringketon-Anilen mit Isocyanaten und Isothiocyanaten. Tetrahedron, 21, 3311–3323. DOI: 10.1016/s0040-4020(01)96953-4. (in German)

    Article  CAS  Google Scholar 

  • Huisgen, R., Szeimines, G., & Mobius, L. (1967). 1,3-Dipolare Cycloadditionen, XXXII. Kinetik der Additionen organischer Azide an CC-Mehrfachbindungen. Chemische Berichte, 100, 2494–2507. DOI: 10.1002/cber.19671000806. (in German)

    Article  CAS  Google Scholar 

  • Huisgen, R. (1980). Cycloaddition mechanism and the solvent dependence of rate. Pure and Applied Chemistry, 52, 2283–2310. DOI: 10.1351/pac198052102283.

    Article  CAS  Google Scholar 

  • Huisgen, R., Fisera, L., Giera, H., & Sustmann, R. (1995). Thiones as superdipolarophiles. Rates and equilibria of nitrone cycloadditions to thioketones. Journal of the American Chemical Society, 117, 9671–9678. DOI: 10.1021/ja00143a008.

    Article  CAS  Google Scholar 

  • Kadaba, P. K. (1969). Triazolines-IV: Solvation effects and the role of protic-dipolar aprotic solvents in 1,3-cycloaddition reactions. Tetrahedron, 25, 3053–3066. DOI: 10.1016/s0040-4020(01)82839-8.

    Article  CAS  Google Scholar 

  • Kadaba, P. K. (1973). Role of protic and dipolar aprotic solvents in heterocyclic syntheses via 1,3-dipolar cycloaddition reactions. Synthesis, 1973, 71–84. DOI: 10.1055/s-1973-22136.

    Article  Google Scholar 

  • Kanchithalaivan, S., Kumar, R. R., & Peruma, S. (2013). Synthesis of novel 16-spiro steroids: Spiro-7′-(aryl)tetrahydro-1H-pyrrolo[1,2-c][1,3]thiazolo-trans-androsterone hybrid heterocycles. Steroids, 78, 409–417. DOI: 10.1016/j.steroids.2012.12.017.

    Article  CAS  Google Scholar 

  • Lee, C. T., Yang, W. T., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785–789. DOI: 10.1103/physrevb.37.785.

    Article  CAS  Google Scholar 

  • Liu, Z. Z., Chen, Z. R., Yin, H., & Yuan, S. F. (2012). Mechanistic insights into the reaction of CF3CCl3 with SO3: Theory and experiment. Chemical Papers, 66, 1059–1064. DOI: 10.2478/s11696-012-0205-8.

    Article  CAS  Google Scholar 

  • Michalak, A., De Proft, F., Geerlings, P., & Nalewajski, R. F. (1999). Fukui functions from the relaxed Kohn-Sham orbitals. The Journal of Physical Chemistry A, 103, 762–771. DOI: 10.1021/jp982761i.

    Article  CAS  Google Scholar 

  • Ohgaki, E., Motoyoshiya, J., Narita, S., Kakurai, T., Hayashi, S., & Hirakawa, K. I. (1990). Effect of boron trifluoride-diethyl ether (BF3·OEt2) in the Diels-Alder reaction of quinoline- and isoquinoline-5,8-dione with unsymmetrical aliphatic dienes: Theoretical study on the orientation of cycloadditions. Journal of the Chemical Society, Perkin Transactions 1,1990, 3109–3112. DOI: 10.1039/p19900003109.

    Article  Google Scholar 

  • Padwa, A. (1984). 1,3-Dipolar cycloaddition chemistry. New York, NY, USA: Wiley.

    Google Scholar 

  • Peng, C. Y., Ayala, P. Y., Schlegel, H. B., & Frisch, M. J. (1996). Using redundant internal coordinates to optimize equilibrium geometries and transition states. Journal of Computational Chemistry, 17, 49–56. DOI: 10.1002/(sici)1096-987x(19960115)17:1<49::aid-jcc5>3.0.co;2-0.

    Article  CAS  Google Scholar 

  • Reed, A. E., Curtiss, L. A., & Weinhold, F. (1988). Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chemical Reviews, 88, 899–926. DOI: 10.1021/cr00088a005.

    Article  CAS  Google Scholar 

  • Rooney, J. J. (1995). Eyring transition-state theory and kinetics in catalysis. Journal of Molecular Catalysis A: Chemical, 96, Ll–L3. DOI: 10.1016/1381-1169(94)00054-9.

    Article  Google Scholar 

  • Tomasi, J., & Persico, M. (1994). Molecular interactions in solution: An overview of methods based on continuous distributions of the solvent. Chemical Reviews, 94, 2027–2094. DOI: 10.1021/cr00031a013.

    Article  CAS  Google Scholar 

  • Wilson, C. L. (1947). Reactions of furan compounds. VII. Thermal interconversion of 2,3-dihydrofuran and cyclopropane aldehyde. Journal of the American Chemical Society, 69, 3002–3004. DOI: 10.1021/ja01204a020.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Reza Bekhradnia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bekhradnia, A.R., Arshadi, S. & Siadati, S.A. 1,3-Dipolar cycloaddition between substituted phenyl azide and 2,3-dihydrofuran. Chem. Pap. 68, 283–290 (2014). https://doi.org/10.2478/s11696-013-0440-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0440-7

Keywords

Navigation