Skip to main content
Log in

Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Sulphated polysaccharides (SP) were extracted from Fucus vesiculosus seaweed by using two different hydrothermal processes: microwave-assisted extraction (MAE) and autohydrolysis (AH). The extraction yields, chemical composition, and antioxidant activity of the polysaccharides extracted were determined and compared. Although both processes afforded SP with similar yields (18.2 mass % and 16.5 mass %, for MAE and AH, respectively) and l-fucose as the main monosaccharide, the heterogeneous structure of the polysaccharide recovered was significantly affected by the AH process. The SP obtained by MAE contained 53.8 mole % of fucose, 35.3 mole % of xylose, and 10.8 mole % of galactose; while the SP obtained by AH was composed of 76.8 mole % of fucose and 23.2 mole % of galactose. Both samples presented comparable values of antioxidant activity by the di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (2,2-diphenyl-1-picrylhydrazyl, DPPH), 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), and lipid oxidation inhibition methods, but the polysaccharide obtained by AH exhibited a higher antioxidant potential by the differential pulse voltammetry technique. This study demonstrates that the chemical composition and antioxidant activity of SP obtained from F. vesiculosus vary according to the process used for their extraction. However, the SP obtained by MAE or AH both have the potential for use as natural antioxidants in industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barahona, T., Chandía, N. P., Encinas, M. V., Matsuhiro, B., & Zúñiga, E. A. (2011). Antioxidant capacity of sulfated polysaccharides from seaweeds. A kinetic approach. Food Hydrocolloids, 25, 529–535. DOI: 10.1016/j.foodhyd.2010.08.004.

    Article  CAS  Google Scholar 

  • Barros, L., Falcão, S., Baptista, P., Freire, C., Vilas-Boas, M., & Ferreira, I. C. F. R. (2008). Antioxidant activity of Agaricus sp. mushrooms by chemical, biochemical and electrochemical assays. Food Chemistry, 111, 61–66. DOI:10.1016/j.foodchem.2008.03.033.

    CAS  Google Scholar 

  • Bhakuni, D. S., & Rawat, D. S. (2005). Bioactive marine natural products. New York, NY, USA: Springer.

    Google Scholar 

  • Costa, L. S., Fidelis, G. P., Cordeiro, S. L., Oliveira, R. M., Sabry, D. A., Câmara, R. B. G., Nobre, L. T. D. B., Costa, M. S. S. P., Almeida-Lima, J., Farias, E. H. C., Leite, E. L., & Rocha, H. A. O. (2010). Biological activities of sulfated polysaccharides from tropical seaweeds. Biomedicine & Pharmacotherapy, 64, 21–28. DOI: 10.1016/j.biopha.2009.03.005.

    Article  CAS  Google Scholar 

  • Dodgson, K. S. (1961). Determination of inorganic sulphate in studies on the enzymic and non-enzymic hydrolysis of carbohydrate and other sulphate esters. Biochemical Journal, 78, 312–319.

    CAS  Google Scholar 

  • Garrote, G., Domínguez, H., & Parajó, J. C. (1999). Hydrothermal processing of lignocellulosic materials. Holz als Roh- und Werksttoff, 57, 191–202. DOI: 10.1007/s001070050039.

    Article  CAS  Google Scholar 

  • Halliwell, B. (2012). Free radicals and antioxidants: updating a personal view. Nutrition Reviews, 70, 257–265. DOI: 10.1111/j.1753-4887.2012.00476.x.

    Article  Google Scholar 

  • Haroun-Bouhedja, F., Ellouali, M., Sinquin, C., & Boisson-Vidal, C. (2000). Relationship between sulfate groups and biological activities of fucans. Thrombosis Research, 100, 453–459. DOI: 10.1016/s0049-3848(00)00338-8.

    Article  CAS  Google Scholar 

  • Hu, F. L., Lu, R. L., Huang, B., & Ming, L. (2004). Free radical scavenging activity of extracts prepared from fresh leaves of selected Chinese medicinal plants. Fitoterapia, 75, 14–23. DOI: 10.1016/j.fitote.2003.07.003.

    Article  Google Scholar 

  • Jiao, G. L., Yu, G. L., Wang, W., Zhao, X. L., Zhang, J. Z., & Ewart, S. H. (2012). Properties of polysaccharides in several seaweeds from Atlantic Canada and their potential anti-influenza viral activities. Journal of Ocean University of China, 11, 205–212. DOI: 10.1007/s11802-012-1906-x.

    Article  CAS  Google Scholar 

  • Kim, D. O., & Lee, C. Y. (2002). Extraction and isolation of polyphenolics. Current Protocols in Food Analytical Chemistry, 6, I1.2.1–I1.2.12. DOI: 10.1002/0471142913.fai0102s06.

    Google Scholar 

  • Korotkova, E. I., Karbainov, Y. A., & Shevchuk, A. V. (2002). Study of antioxidant properties by voltammetry. Journal of Electroanalytical Chemistry, 518, 56–60. DOI: 10.1016/s0022-0728(01)00664-7.

    Article  CAS  Google Scholar 

  • Li, B., Lu, F., Wei, X. J., & Zhao, R. X. (2008). Fucoidan: Structure and bioactivity. Molecules, 13, 1671–1695. DOI:10.3390/molecules13081671.

    Article  CAS  Google Scholar 

  • Lim, S. N., Cheung, P. C. K., Ooi, V. E. C., & Ang, P. O. (2002). Evaluation of antioxidative activity of extracts from a brown seaweed, Sargassum siliquastrum. Journal of Agricultural and Food Chemistry, 50, 3862–3866. DOI: 10.1021/jf020096b.

    Article  CAS  Google Scholar 

  • Mao, W. J., Zang, X. X., Li, Y., & Zhang, H. J. (2006). Sulfated polysaccharides from marine green algae Ulva conglobata and their anticoagulant activity. Journal of Applied Phycology, 18, 9–14. DOI: 10.1007/s10811-005-9008-4.

    Article  CAS  Google Scholar 

  • Martins, S., Aguilar, C. N., Teixeira, J. A., & Mussatto, S. I. (2012). Bioactive compounds (phytoestrogens) recovery from Larrea tridentata leaves by solvents extraction. Separation and Purification Technology, 88, 163–167. DOI: 10.1016/j.seppur.2011.12.020.

    Article  CAS  Google Scholar 

  • Qi, H. M., Zhao, T. T., Zhang, Q. B., Li, Z., Zhao, Z. Q., & Xing, R. (2005). Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa Kjellm (Chlorophyta). Journal of Applied Phycology, 17, 527–534. DOI: 10.1007/s10811-005-9003-9.

    Article  CAS  Google Scholar 

  • Rioux, L. E., Turgeon, S. L., & Beaulieu, M. (2007). Characterization of polysaccharides extracted from brown seaweeds. Carbohydrate Polymers, 69, 530–537. DOI: 10.1016/j. carbpol.2007.01.009.

    Article  CAS  Google Scholar 

  • Rodriguez-Jasso, R. M., Mussatto, S. I., Pastrana, L., Aguilar, C. N., & Teixeira, J. A. (2011). Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydrate Polymers, 86, 1137–1144. DOI: 10.1016/j.carbpol.2011.06.006.

    Article  CAS  Google Scholar 

  • Rodriguez-Jasso, R. M., Mussatto, S. I., Pastrana, L., Aguilar, C. N., & Teixeira, J. A. (2013). Extraction of sulfated polysaccharides by autohydrolysis of brown seaweed Fucus vesiculosus. Journal of Applied Phycology, 25, 31–39. DOI: 10.1007/s10811-012-9834-0.

    Article  CAS  Google Scholar 

  • Rupérez, P., Ahrazem, O., & Leal, J. A. (2002). Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. Journal of Agricultural and Food Chemistry, 50, 840–845. DOI: 10.1021/jf010908o.

    Article  Google Scholar 

  • Schaeffer, D. J., & Krylov, V. S. (2000). Anti-HIV activity of extracts and compounds from algae and cyanobacteria. Ecotoxicology and Environmental Safety, 45, 208–227. DOI: 10.1006/eesa.1999.1862.

    Article  CAS  Google Scholar 

  • Sokolova, E. V., Barabanova, A. O., Bogdanovich, R. N., Khomenko, V. A., Solov’eva, T. F., & Yermak, I. M. (2011). In vitro antioxidant properties of red algal polysaccharides. Biomedicine & Preventive Nutrition, 1, 161–167. DOI: 10.1016/j.bionut.2011.06.011.

    Article  Google Scholar 

  • Wang, J., Zhang, Q. B., Zhang, Z. S., Song, H. F., & Li, P. C. (2010). Potential antioxidant and anticoagulant capacity of low molecular weight fucoidan fractions extracted from Laminaria japonica. International Journal of Biological Macromolecules, 46, 6–12. DOI: 10.1016/j.ijbiomac.2009.10.015.

    Article  CAS  Google Scholar 

  • Wijesekara, I., Pangestuti, R., & Kim, S. K. (2011). Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydrate Polymers, 84, 14–21. DOI: 10.1016/j.carbpol.2010.10.062.

    Article  CAS  Google Scholar 

  • Wijesinghe, W. A. J. P., & Jeon, Y. J. (2012). Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: A review. Carbohydrate Polymers, 88, 13–20. DOI: 10.1016/j.carbpol.2011.12.029.

    Article  CAS  Google Scholar 

  • Yuan, H. M., Zhang, W. W., Li, X. G., Lü, X. X., Li, N., Gao, X. L., & Song, J. M. (2005). Preparation and in vitro antioxidant activity of κ-carrageenan oligosaccharides and their oversulfated, acetylated, and phosphorylated derivatives. Carbohydrate Research, 340, 685–692. DOI: 10.1016/j.carres.2004.12.026.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solange I. Mussatto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez-Jasso, R.M., Mussatto, S.I., Pastrana, L. et al. Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes. Chem. Pap. 68, 203–209 (2014). https://doi.org/10.2478/s11696-013-0430-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0430-9

Keywords

Navigation