Skip to main content

Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols

Abstract

The thermal stability (60°C, 80°C, 100°C), antioxidant activity, and ultraviolet C light (UV-C) stability of standard polyphenols solutions (catechin, gallic acid, and vanillic acid) and of vegetal extracts from spruce bark and grape seeds were investigated. Exposure of the standard solutions and vegetal extracts to high temperatures revealed that phenolic compounds were also relatively stable (degradations ranged from 15 % to 30 % after 4 h of exposure). The highest antioxidant activity was obtained for ascorbic acid and gallic acid followed by catechin and caffeic acid and the grape seeds. The results show that, after 3 h of UV-C exposure, approximately 40 % of vanillic acid, 50 % of gallic acid, and 83 % of catechin were removed. Similar degradation rates were observed for vegetal extracts, with the exception of the degradation of catechin (40 %) from grape seeds. In addition, the photo-oxidation of polyphenols in the presence of food constituents such as citric acid, ascorbic acid, sodium chloride, and sodium nitrate was assessed.

This is a preview of subscription content, access via your institution.

References

  • Almela, L., Sánchez-Muñoz, B., Fernández-López, J. A., Roca, M. J., & Rabe, V. (2006). Liquid chromatograpic-mass spectrometric analysis of phenolics and free radical scavenging activity of rosemary extract from different raw material. Journal of Chromatography A, 1120, 221–229. DOI: 10.1016/j.chroma.2006.02.056.

    Article  CAS  Google Scholar 

  • Bąkowska, A., Kucharska, Z. A., & Oszmiański, J. (2003). The effects of heating, UV irradiation, and storage on stability of the anthocyanin-polyphenol copigment complex. Food Chemistry, 81, 349–355. DOI: 10.1016/s0308-8146(02)00429-6.

    Article  Google Scholar 

  • Benitez, F. J., Real, F. J., Acero, J. L., Leal, A. I., & Garcia, C. (2005). Gallic acid degradation in aqueous solutions by UV/H2O2 treatment, Fenton’s reagent and the photo-Fenton system. Journal of Hazardous Materials, 126, 31–39. DOI: 10.1016/j.jhazmat.2005.04.040.

    Article  CAS  Google Scholar 

  • Castañeda-Ovando, A., Pacheco-Hernández, M. L., Páez-Hernández, M. E., Rodríguez, J. A., & Galán-Vidal, C. A. (2009). Chemical studies of anthocyanins: A review. Food Chemistry, 113, 859–871. DOI: 10.1016/j.foodchem.2008.09.001.

    Article  Google Scholar 

  • Díaz-García, M. C., Obón, J. M., Castellar, M. R., Collado, J., & Alacid, M. (2013). Quantification by UHPLC of total individual polyphenols in fruit juices. Food Chemistry, 138, 938–949. DOI: 10.1016/j.foodchem.2012.11.061.

    Article  Google Scholar 

  • Fischer, U. A., Carle, R., & Kammerer, D. R. (2013). Thermal stability of anthocyanins and colourless phenolics in pomegranate (Punica granatum L.) juices and model solutions. Food Chemistry, 138, 1800–1809. DOI: 10.1016/j.foodchem.2012.10.072.

    Article  CAS  Google Scholar 

  • Giusti, M. M., & Wrolstad, R. E. (2003). Acylated anthocyanins from edible sources and their applications in food systems. Biochemical Engineering Journal, 14, 217–225. DOI: 10.1016/s1369-703x(02)00221-8.

    Article  CAS  Google Scholar 

  • Hainal, A. R., Ignat, I., Volf, I., & Popa, V. I. (2011). Transformation of polyphenols from biomass by some yeast species. Cellulose Chemistry and Technology, 45, 211–219.

    CAS  Google Scholar 

  • Ignat, I., Volf, I., & Popa, V. I. (2011a). A critical review of methods for characterization of polyphenolic compounds in fruits and vegetables. Food Chemistry, 126, 1821–1835. DOI: 10.1016/j.foodchem.2010.12.026.

    Article  CAS  Google Scholar 

  • Ignat, I., Stingu, A., Volf, I., & Popa, V. I. (2011b). Characterization of grape seeds aqueous extract and possible application in biological systems. Cellulose Chemistry and Technology, 45, 205–209.

    CAS  Google Scholar 

  • Karou, D., Dicko, M. H., Simpore, J., & Traore, A. S. (2005). Antioxidant and antibacterial activities of Polyphenols from ethnomedicinal plants of Burkina Faso. African Journal of Biotechnology, 4, 823–828.

    CAS  Google Scholar 

  • Kırca, A., & Arslan, E. (2008). Antioxidant capacity and total phenolic content of selected plants from Turkey. International Journal of Food Science and Technology, 43, 2038–2046. DOI: 10.1111/j.1365-2621.2008.01818.x.

    Article  Google Scholar 

  • Koutchma, T. (2008). UV-light for processing foods. Ozone: Science and Engineering: The Journal of the International Ozone Association, 30, 93–98. DOI: 10.1080/01919510701816346.

    Article  CAS  Google Scholar 

  • Koutchma, T. (2009). Advances in ultraviolet light technology for non-thermal processing of liquid foods. Food Bioprocess Technology, 2, 138–155. DOI: 10.1007/s11947-008-0178-3.

    Article  CAS  Google Scholar 

  • Mack, J., & Bolton, J. R. (1999). Photochemistry of nitrite and nitrate in aqueous solution: a review. Journal of Photochemistry and Photobiology A: Chemistry, 128, 1–13. DOI: 10.1016/s1010-6030(99)00155-0.

    Article  CAS  Google Scholar 

  • Montoro, P., Tuberoso, C. I. G., Piacente, S., Perrone, A., De Feo, V., Cabras, P., & Pizza, C. (2006). Stability and antioxidant activity of polyphenols in extracts of Myrtus communis L. berries used for the preparation of myrtle liqueur. Journal of Pharmaceutical and Biomedical Analysis, 41, 1614–1619. DOI: 10.1016/j.jpba.2006.02.018.

    Article  CAS  Google Scholar 

  • Muanda, F. N., Soulimani, R., Diop, B., & Dicko, A. (2011). Study on chemical composition and biological activities of essential oil and extracts from Stevia rebaudiana Bertoni leaves. LWT — Food Science and Technology, 44, 1865–1872. DOI: 10.1016/j.lwt.2010.12.002.

    Article  CAS  Google Scholar 

  • Naczk, M., & Shahidi, F. (2006). Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. Journal of Pharmaceutical and Biomedical Analysis, 41, 1523–1542. DOI: 10.1016/j.jpba.2006.04.002.

    Article  CAS  Google Scholar 

  • Neamtu, M., & Frimmel, F. H. (2006). Degradation of endocrine disrupting bisphenol A by 254 nm irradiation in different water matrices and effect on yeast cells. Water Research, 40, 3745–3750. DOI: 10.1016/j.watres.2006.08.019.

    Article  CAS  Google Scholar 

  • Neo, Y. P., Ariffin, A., Tan, C. P., & Tan, Y. A. (2008). Determination of oil palm fruit phenolic compounds and their antioxidant activities using spectrophotometric methods. International Journal of Food Science & Technology, 43, 1832–1837. DOI: 10.1111/j.1365-2621.2008.01717.x.

    Article  CAS  Google Scholar 

  • Oppenlaender, T. (2003). Photochemical purification of water and air. New York, NY, USA: Wiley-VCH.

    Google Scholar 

  • Parr, A. J., & Bolwell, G. P. (2000). Phenols in plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. Journal of the Science of Food and Agriculture, 80, 985–1012. DOI: 10.1002/(sici)1097-0010(20000515)80:7〈985::aidjsfa572〉3.0.co;2-7.

    Article  CAS  Google Scholar 

  • Sajiki, J., & Yonekubo, J. (2003). Leaching of bisphenol A (BPA) to seawater from polycarbonate plastic and its degradation by reactive oxygen species. Chemosphere, 51, 55–62. DOI: 10.1016/s0045-6535(02)00789-0.

    Article  CAS  Google Scholar 

  • Sarikurkcu, C., Tepe, B., Daferera, D., Polissiou, M., & Harmandar, M. (2008). Studies on the antioxidant activity of the essential oil and methanol extract of Marrubium globosum subsp. globosum (lamiaceae) by three different chemical assays. Bioresource Technology, 99, 4239–4246. DOI: 10.1016/j.biortech.2007.08.058.

    Article  CAS  Google Scholar 

  • Schindelin, A. J., & Frimmel, F. H. (2000). Nitrate and natural organic matter in aqueous solutions irradiated by simulated sunlight. Environmental Science and Pollution Research, 7, 205–210. DOI: 10.1007/bf02987349.

    Article  CAS  Google Scholar 

  • Tikekar, R. V., Anantheswaran, R. C., & LaBorde, L. F. (2011a). Ascorbic acid degradation in a model apple juice system and in apple juice during ultraviolet processing and storage. Journal of Food Science, 76, H62–H71. DOI: 10.1111/j.1750-3841.2010.02015.x.

    Article  CAS  Google Scholar 

  • Tikekar, R. V., Anantheswaran, R. C., Elias, R. J., & LaBorde, L. F. (2011b). Ultraviolet-induced oxidation of ascorbic acid in a model juice system: Identification of degradation products. Journal of Agricultural and Food Chemistry, 59, 8244–8248. DOI: 10.1021/jf201000x.

    Article  CAS  Google Scholar 

  • Tikekar, R. V., Anantheswaran, R. C., & LaBorde, L. F. (2012). Patulin degradation in a model apple juice system and in apple juice during ultraviolet processing. Journal of Food Processing and Preservation. DOI: 10.1111/jfpp.12047. (in press)

    Google Scholar 

  • Food and Drug Administration (2000). Irradiation in the production, processing and handling of food. Federal Register, 65, 71056–71058.

    Google Scholar 

  • Warneck, P., & Wurzinger, C. (1988). Product quantum yields for the 305-nm photodecomposition of nitrate in aqueous solution. Journal of Physical Chemistry, 92, 6278–6283. DOI: 10.1021/j100333a022.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ioana Ignat or Mariana Neamtu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Volf, I., Ignat, I., Neamtu, M. et al. Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols. Chem. Pap. 68, 121–129 (2014). https://doi.org/10.2478/s11696-013-0417-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0417-6

Keywords

  • polyphenols
  • photo-oxidation
  • thermal stability
  • radical scavenging activity
  • food additives