Skip to main content
Log in

A comparative study on direct production of ethyl levulinate from glucose in ethanol media catalysed by different acid catalysts

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript


Direct production of ethyl levulinate (EL) from glucose catalysed by a liquid acid catalyst (sulfuric acid) and a solid acid zeolite catalyst USY NKF-7 (USY) in ethanol media was investigated in this study. Effects of the initial glucose concentration (C G0), reaction temperature (T), amount of acid catalyst, and water addition on the yields of EL were compared, respectively. The results show that higher yield of EL can be obtained at lower C G0. Higher temperature and acid concentration can accelerate the reaction rate, but the formation rate of the by-products increases more quickly than that of EL. Water addition also can result in the decrease of the yield of EL. Although sulfuric acid is efficient in the production of EL, the USY is more efficient in converting glucose to 5-ethoxymethyl-2-furaldehyde. Moreover, the use of USY can limit the diethyl ether production, and it can be reused for multiple times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  • Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chemistry, 12, 539–554. DOI: 10.1039/b922014c.

    Article  CAS  Google Scholar 

  • Chang, C., Jiang, X. X., Zhang, T., & Li, B. (2012a). Effect of reaction parameters on the production of ethyl levulinate from glucose in ethanol. Advanced Materials Research, 512–515, 388–391. DOI: 10.4028/

    Article  Google Scholar 

  • Chang, C., Xu, G., & Jiang, X. (2012b). Production of ethyl levulinate by direct conversion of wheat straw in ethanol media. Bioresource Technology, 121, 93–99. DOI: 10.1016/j.biortech.2012.06.105.

    Article  CAS  Google Scholar 

  • Chia, M., & Dumesic, J. A. (2011). Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to γ-valerolactone over metal oxide catalysts. Chemical Communications, 47, 12233–12235. DOI: 10.1039/c1cc14748j.

    Article  CAS  Google Scholar 

  • Dharne, S., & Bokade, V. V. (2011). Esterification of levulinic acid to n-butyl levulinate over heteropolyacid supported on acid-treated clay. Journal of Natural Gas Chemistry, 20, 18–24. DOI: 10.1016/s1003-9953(10)60147-8.

    Article  CAS  Google Scholar 

  • Fernandes, D. R., Rocha, A. S., Mai, E. F., Mota, C. J. A., & Teixeira da Silva, V. (2012). Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts. Applied Catalysis A: General, 425-426, 199–204. DOI: 10.1016/j.apcata.2012.03.020.

    Article  CAS  Google Scholar 

  • Garves, K. (1988). Acid catalyzed degradation of cellulose in alcohols. Journal of Wood Chemistry and Technology, 8, 121–134. DOI: 10.1080/02773818808070674.

    Article  CAS  Google Scholar 

  • Gürbüz, E. I., Alonso, D. M., Bond, J. Q., & Dumesic, J. A. (2011). Reactive extraction of levulinate esters and conversion to γ-valerolactone for production of liquid fuels. Chem-SusChem, 4, 357–361 DOI: 10.1002/cssc.201000396.

    Google Scholar 

  • Hu, X., Lievens, C., Larcher, A., & Li, C. Z. (2011). Reaction pathways of glucose during esterification: Effects of reaction parameters on the formation of humin type polymers. Bioresource Technology, 102, 10104–10113. DOI: 10.1016/j.biortech.2011.08.040.

    Article  CAS  Google Scholar 

  • Joshi, H., Moser, B. R., Toler, J., Smith, W. F., & Walker, T. (2011). Ethyl levulinate: A potential bio-based diluent for biodiesel which improves cold flow properties. Biomass and Bioenergy, 35, 3262–3266. DOI: 10.1016/j.biombioe.2011.04.020.

    Article  CAS  Google Scholar 

  • Lange, J. P., van de Graaf, W. D., & Haan, R. J. (2009). Conversion of furfuryl alcohol into ethyl levulinate using solid acid catalysts. ChemSusChem, 2, 437–441. DOI: 10.1002/cssc.200800216.

    Article  CAS  Google Scholar 

  • Lee, A., Chaibakhsh, N., Abdul Rahman, M. B., Basri, M., & Tejo, B. A. (2010). Optimized enzymatic synthesis of levulinate ester in solvent-free system. Industrial Crops and Products, 32, 246–251. DOI: 10.1016/j.indcrop.2010.04.022.

    Article  CAS  Google Scholar 

  • Le Van Mao, R., Zhao, Q., Dima, G., & Petraccone, D. (2011). New process for the acid-catalyzed conversion of cellulosic biomass (AC3B) into alkyl levulinates and other esters using a unique one-pot system of reaction and product extraction. Catalysis Letters, 141, 271–276. DOI: 10.1007/s10562-010-0493-y.

    Article  Google Scholar 

  • Mascal, M., & Nikitin, E. B. (2010a). Comment on processes for the direct conversion of cellulose or cellulosic biomass into levulinate esters. ChemSusChem, 3, 1349–1351. DOI: 10.1002/cssc.201000326.

    Article  CAS  Google Scholar 

  • Mascal, M., & Nikitin, E. B. (2010b). High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl)furfural, levulinic acid, and levulinic esters via 5-(chloromethyl)furfural. Green Chemistry, 12, 370–373. DOI: 10.1039/b918922j.

    Article  CAS  Google Scholar 

  • Murat Sen, S., Henao, C. A., Braden, D. J., Dumesic, J. A., & Maravelias, C. T. (2012). Catalytic conversion of lignocellulosic biomass to fuels: Process development and technoeconomic evaluation. Chemical Engineering Science, 67, 57–67. DOI: 10.1016/j.ces.2011.07.022.

    Article  CAS  Google Scholar 

  • Olson, E. S., Kjelden, M. R., Schlag, A. J., & Sharma, R. K. (2001). Levulinate esters from biomass wastes. ACS Symposium Series, 784, 51–63. DOI: 10.1021/bk-2001-0784.ch005.

    Article  CAS  Google Scholar 

  • Peng, L., Lin, L., Li, H., & Yang, Q. (2011a). Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts. Applied Energy, 88, 4590–4596. DOI: 10.1016/j.apenergy.2011.05.049.

    Article  CAS  Google Scholar 

  • Peng, L., Lin, L., Zhang, J., Shi, J., & Liu, S. (2011b). Solid acid catalyzed glucose conversion to ethyl levulinate. Applied Catalysis A: General, 397, 259–265. DOI: 10.1016/j.apcata.2011.03.008.

    Article  CAS  Google Scholar 

  • Peng, L., Lin, L., & Li, H. (2012). Extremely low sulfuric acid catalyst system for synthesis of methyl levulinate from glucose. Industrial Crops and Products, 40, 136–144. DOI: 10.1016/j.indcrop.2012.03.007.

    Article  CAS  Google Scholar 

  • Rataboul, F., & Essayem, N. (2011). Cellulose reactivity in supercritical methanol in the presence of solid acid catalysts: Direct synthesis of methyl-levulinate. Industrial & Engineering Chemistry Research, 50, 799–805. DOI: 10.1021/ie101616e.

    Article  CAS  Google Scholar 

  • Saravanamurugan, S., & Riisager, A. (2012). Solid acid catalysed formation of ethyl levulinate and ethyl glucopyranoside from mono- and disaccharides. Catalysis Communications, 17, 71–75. DOI: 10.1016/j.catcom.2011.10.001.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Chun Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, GZ., Chang, C., Zhu, WN. et al. A comparative study on direct production of ethyl levulinate from glucose in ethanol media catalysed by different acid catalysts. Chem. Pap. 67, 1355–1363 (2013).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: