Skip to main content
Log in

Production of l-tryptophan by enantioselective hydrolysis of d,l-tryptophanamide using a newly isolated bacterium

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Bacterial strain ZJB-09211 capable of amidase production has recently been isolated from soil samples. The strain is able to asymmetrically hydrolyze l-tryptophanamide from d,l-tryptophanamide to produce l-tryptophan in high yield and with excellent stereoselectivity (enantiomeric excess > 99.9 %, and enantiomeric ratio > 200). Strain ZJB-09211 has been identified as Flavobacterium aquatile based on the cell morphology analysis, physiological tests, and the 16S rDNA sequence analysis. Optimization of the fermentation medium led to an about six-fold increase in the amidase activity of strain ZJB-09211, which reached 501.5 U L−1. Substrate specifity and stereoselectivity investigations revealed that amidase of F. aquatile possessed a broad substrate spectrum and high enantioselectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Açıkel, Ü., Erşan, M., & Açıkel, Y. S. (2010). Optimization of critical medium components using response surface methodology for lipase production by Rhizopus delemar. Food and Bioproducts Processing, 88, 31–39. DOI: 10.1016/j.fbp.2009.08.003.

    Article  Google Scholar 

  • Asano, Y., & Yamaguchi, S. (2005a). Dynamic kinetic resolution of amino acid amide catalyzed by d-aminopeptidase and α-amino-ɛ-caprolactam racemase. Journal of the American Chemical Society, 127, 7696–7697. DOI: 10.1021/ja050300m.

    Article  CAS  Google Scholar 

  • Asano, Y., & Yamaguchi, S. (2005b). Discovery of amino acid amides as new substrates for α-amino-ɛ-caprolactam racemase from Achromobacter obae. Journal of Molecular Catalysis B: Enzymatic, 36, 22–29. DOI: 10.1016/j.molcatb.2005.07.003.

    Article  CAS  Google Scholar 

  • Azuma, S., Tsunekawa, H., Okabe, M., Okamoto, R., & Aiba, S. (1993). Hyper-production of l-trytophan via fermentation with crystallization. Applied Microbiology and Biotechnology, 39, 471–476. DOI: 10.1007/bf00205035.

    Article  CAS  Google Scholar 

  • Eggers, D. K., Lim, D. J., & Blanch, H. W. (1988). Enzymatic production of l-tryptophan in liquid membrane systems. Bioprocess Engineering, 3, 23–30. DOI: 10.1007/bf00372856.

    Article  CAS  Google Scholar 

  • Fournand, D., Bigey, F., & Arnaud, A. (1998). Acyl transfer activity of an amidase from Rhodococcus sp. strain R312: Formation of a wide range of hydroxamic acids. Applied and Environmental Microbiology, 64, 2844–2852.

    CAS  Google Scholar 

  • Ikeda, M. (2006). Towards bacterial strains overproducing Ltryptophan and other aromatics by metabolic engineering. Applied Microbiology and Biotechnology, 69, 615–626. DOI: 10.1007/s00253-005-0252-y.

    Article  CAS  Google Scholar 

  • Jakoby, W. B., & Fredericks, J. (1964). Reactions catalyzed by amidases: ACETAMIDASE. Journal of Biological Chemistry, 239, 1978–1982.

    CAS  Google Scholar 

  • Katsumata, R., & Ikeda, M. (1993). Hyperproduction of tryptophan in Corynebacterium glutamicum by pathway engineering. Nature Biotechnology, 11, 921–925. DOI: 10.1038/nbt 0893-921.

    Article  CAS  Google Scholar 

  • Koçaba, P., Çalık, P., & Özdamar, T. H. (2006). Fermentation characteristics of l-tryptophan production by thermoacidophilic Bacillus acidocaldarius in a defined medium. Enzyme and Microbial Technology, 39, 1077–1088. DOI: 10.1016/j.enzmictec.2006.02.012.

    Article  Google Scholar 

  • Komeda, H., & Asano, Y. (2008). A novel d-stereoselective amino acid amidase from Brevibacterium iodinum: Gene cloning, expression and characterization. Enzyme and Microbial Technology, 43, 276–283. DOI: 10.1016/j.enzmictec.2008.03.008.

    Article  CAS  Google Scholar 

  • Martinkova, L., & Mylerova, V. (2003). Synthetic applications of nitrile-converting enzymes. Current Organic Chemistry, 7, 1279–1295. DOI: 10.2174/1385272033486486.

    Article  CAS  Google Scholar 

  • Mateus, D. M. R., Alves, S. S., & da Fonseca, M. M. R. (2004). Kinetics of l-tryptophan production from indole and l-serine catalyzed by whole cells with tryptophanase activity. Journal of Bioscience and Bioengineering, 97, 289–293. DOI: 10.1016/s1389-1723(04)70207-8.

    CAS  Google Scholar 

  • Shaw, N. M., Robins, K. T., & Kiener, A. (2003). Lonza: 20 years of biotransformations. Advanced Synthesis & Catalysis, 345, 425–435. DOI: 10.1002/adsc.200390049.

    Article  CAS  Google Scholar 

  • Shigematsu, T., Yumihara, K., Ueda, Y., Numaguchi, M., Morimura, S., & Kida, K. (2003). Delftia tsuruhatensis sp. nov., a terephthalate-assimilating bacterium isolated from activated sludge. International Journal of Systematic and Evolutionary Microbiology, 53, 1479–1483. DOI: 10.1099/ijs.0.02285-0.

    Article  CAS  Google Scholar 

  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680. DOI: 10.1093/nar/22.22.4673.

    Article  CAS  Google Scholar 

  • Wang, Y. S., Xu, J. M., Zheng, R. C., Zheng, Y. G., & Shen, Y. C. (2008). Improvement of amidase production by a newly isolated Delftia tsuruhatensis ZJB-05174 through optimization of culture medium. Journal of Microbiology and Biotechnology, 18, 1932–1937. DOI: 10.4014/jmb.0800.224.

    CAS  Google Scholar 

  • Wang, Y. S., Zheng, R. C., Xu, J. M., Liu, Z. Q., Cheng, F., Feng, Z. H., Liu, L. L., Zheng, Y. G., & Shen, Y. C. (2010). Enantioselective hydrolysis of (R)-2,2-dimethylcyclopropane carboxamide by immobilized cells of an R-amidase-producing bacterium, Delftia tsuruhatensis CCTCC M 205114, on an alginate capsule carrier. Journal of Industrial Microbiology and Biotechnology, 37, 503–510. DOI: 10.1007/s10295-010-0696-7.

    Article  CAS  Google Scholar 

  • Wilson, K., Ausubel, F. M., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., & Struhl, K. (1997). Current protocols in molecular biology. New York, NY, USA: Wiley.

    Google Scholar 

  • Winnicka, E., & Kańska, M. (2009). Synthesis of l-tryptophan labeled with hydrogen isotopes in the indole ring. Journal of Radioanalytical and Nuclear Chemistry, 279, 675–678. DOI: 10.1007/s10967-007-7310-8.

    Article  CAS  Google Scholar 

  • Yang, Z. Y., Ni, Y., Lu, Z. Y., Liao, X. R., Zheng, Y. G., & Sun, Z. H. (2011). Industrial production of S-2,2-dimethylcyclopropanecarboxamide with a novel recombinant R-amidase from Delftia tsuruhatensis. Process Biochemistry, 46, 182–187. DOI: 10.1016/j.procbio.2010.08.005.

    Article  CAS  Google Scholar 

  • Zheng, R. C., Wang, Y. S., Zheng, Y. G., & Shen, Y. C. (2012). Kinetic resolution of (R,S)-2,2-dimethylcyclopropanecarboxamide by Delftia tsuruhatensis ZJB-05174: Role of organic cosolvent in reaction medium. Catalysis Communications, 18, 68–71. DOI: 10.1016/j.catcom.2011.11.025.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guo Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, JM., Chen, B., Wang, YS. et al. Production of l-tryptophan by enantioselective hydrolysis of d,l-tryptophanamide using a newly isolated bacterium. Chem. Pap. 67, 1262–1270 (2013). https://doi.org/10.2478/s11696-013-0389-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0389-6

Keywords

Navigation