Advertisement

Chemical Papers

, Volume 67, Issue 12, pp 1495–1503 | Cite as

CFD-based atmospheric dispersion modeling in real urban environments

  • Juraj Labovský
  • Ľudovít JelemenskýEmail author
Original Paper

Abstract

The process of CFD model application for atmospheric dispersion modeling is presented. Increasing the CPU power opens new possibilities of the CFD approach application for consequence analysis in real complex urban environments. As successful CFD simulation is directly dependent on the quality and complexity of the computational mesh, a new methodology of transferring the Geographic Information System (GIS) data to the computational mesh can be utilized. A user software for importing and manipulation with the GIS data and their subsequent transfer to an instructional file for the generation of the computational mesh was prepared and tested. The introduced methodology is relatively simple and it requires only a small amount of input data. The process of creating a computational mesh is very straightforward and fast, which enables the application of CFD modeling in urban environments in all fields of engineering applications in safety analysis. Several recommendations concerning proper definition of boundary conditions for atmospheric dispersion modeling were summarized. The presented approach was tested on a realistic case study of liquefied chlorine release in a real town. Results obtained by the CFD approach were compared with those obtained by a simpler but standard integral model.

Keywords

CFD modeling atmospheric dispersion safety analysis GIS data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Institute of Chemical Engineers (2000). Guidelines for chemical process quantitative risk analysis (2nd ed.). New York, NY, USA: American Institute of Chemical Engineers.Google Scholar
  2. Argyropoulos, C. D., Sideris, G. M., Christolis, M. N., Nivolianitou, Z., & Markatos, N. C. (2010). Modelling pollutants dispersion and plume rise from large hydrocarbon tank fires in neutrally stratified atmosphere. Atmospheric Environment, 44, 803–813. DOI: 10.1016/j.atmosenv.2009.11.034.CrossRefGoogle Scholar
  3. Blocken, B., Stathopoulos, T., & Carmeliet, J. (2007). CFD simulation of the atmospheric boundary layer: wall function problems. Atmospheric Environment, 41, 238–252. DOI: 10.1016/j.atmosenv.2006.08.019.CrossRefGoogle Scholar
  4. Blocken, B., Janssen, W. D., & van Hooff, T. (2012). CFD simulation for pedestrian wind comfort and wind safety in urban areas: General decision framework and case study for the Eindhoven University campus. Environmental Modelling & Software, 30, 15–34. DOI: 10.1016/j.envsoft.2011.11.009.CrossRefGoogle Scholar
  5. Burman, J. (1998). An evaluation of topographical effects on neutral and heavy-gas dispersion with a CFD model. Journal of Wind Engineering and Industrial Aerodynamics, 74–76, 315–325. DOI: 10.1016/s0167-6105 (98)00028-2.CrossRefGoogle Scholar
  6. Fluent Inc. (2005). Fluent: User’s guide. Lebanon, NH, USA.Google Scholar
  7. Garcia Sagrado, A. P., van Beeck, J., Rambaud, P., & Olivari, D. (2002). Numerical and experimental modelling of pollutant dispersion in a street canyon. Journal of Wind Engineering and Industrial Aerodynamics, 90, 321–339. DOI: 10.1016/s0167-6105(01)00215-x.CrossRefGoogle Scholar
  8. Gousseau, P., Blocken, B., Stathopoulos, T., & van Heijst, G. J. F. (2011). CFD simulation of near-field pollutant dispersion on a high-resolution grid: A case study by LES and RANS for a building group in downtown Montreal. Atmospheric Environment, 45, 428–438. DOI: 10.1016/j.atmosenv.2010.09.065.CrossRefGoogle Scholar
  9. Han, J., Arya, S. P., Shen, S. H., & Lin, Y. L. (2000). An estimation of turbulent kinetic energy and energy dissipation rate based on atmospheric boundary layer similarity theory: Hampton, VA, USA: NASA.Google Scholar
  10. Hanna, S. R., Tehranian, S., Carissimo, B., Macdonald, R. W., & Lohner, R. (2002). Comparisons of model simulations with observations of mean flow and turbulence within simple obstacle arrays. Atmospheric Environment, 36, 5067–5079. DOI: 10.1016/s1352-2310(02)00566-6.CrossRefGoogle Scholar
  11. Hanna, S. R., Hansen, O. R., Ichard, M., & Strimaitis, D. (2009). CFD model simulation of dispersion from chlorine railcar releases in industrial and urban areas. Atmospheric Environment, 43, 262–270. DOI: 10.1016/j.atmosenv.2008.09.081.CrossRefGoogle Scholar
  12. Hargreaves, D. M., & Wright, N. G. (2007). On the use of the k-ɛ model in commercial CFD software to model the neutral atmospheric boundary layer. Journal of Wind Engineering and Industrial Aerodynamics, 95, 355–369. DOI: 10.1016/j.jweia.2006.08.002.CrossRefGoogle Scholar
  13. Havens, J. A., & Spicer, T. O. (1985). Development of an atmospheric dispersion model for heavier-than-air gas mixtures. Volume 2. Laboratory Calm Air Heavy Gas Dispersion Experiments. University of Arkansas, Fayetteville, AR, USA. (NTIS No. DTCG23-80-C-20029)Google Scholar
  14. Kim, S. E., & Boysan, F. (1999). Application of CFD to environmental flows. Journal of Wind Engineering and Industrial Aerodynamics, 81, 145–158. DOI: 10.1016/s0167-6105(99)00013-6.CrossRefGoogle Scholar
  15. Kiša, M., & Jelemensky, Ľ. (2009). CFD dispersion modelling for emergency preparadnes. Journal of Loss Prevention in the Process Industries, 22, 97–104. DOI: 10.1016/j.jlp.2008.09.013.CrossRefGoogle Scholar
  16. Koutsourakis, N., Venetsanos, A. G., & Bartzis, J. G. (2012). LES modelling of hydrogen release and accumulation within a non-ventilated ambient pressure garage using the ADREAHF CFD code. International Journal of Hydrogen Energy, 37, 17426–17435. DOI: 10.1016/j.ijhydene.2012.05.146.CrossRefGoogle Scholar
  17. Labovsky, J., & Jelemensky, Ľ. (2010). CFD simulations of ammonia dispersion using ”dynamic” boundary conditions. Process Safety and Environmental Protection, 88, 243–252. DOI: 10.1016/j.psep.2010.03.001.CrossRefGoogle Scholar
  18. Labovsky, J., & Jelemensky, Ľ. (2011). Verification of CFD pollution dispersion modelling based on experimental data. Journal of Loss Prevention in the Process Industries, 24, 166–177. DOI: 10.1016/j.jlp.2010.12.005.CrossRefGoogle Scholar
  19. Letzel, M. O., Krane, M., & Raasch, S. (2008). High resolution urban large-eddy simulation studies from street canyon to neighbourhood scale. Atmospheric Environment, 42, 8770–8784. DOI: 10.1016/j.atmosenv.2008.08.001.CrossRefGoogle Scholar
  20. Mannan, S. (Ed.) (2005). Lee’s loss prevention in the process industries: Hazard identification, assessment, and control (3rd ed., Vol. 1). Burlington, MA, USA: Elsevier Butterworth-Heinemann.Google Scholar
  21. McHugh, C. A., Carruthers, D. J., & Edmunds, H. A. (1997). ADMS and ADMS-Urban. International Journal of Environment and Pollution, 8, 438–440. DOI: 10.1504/ijep.1997.028193.Google Scholar
  22. Middha, P., & Hansen, O. R. (2009). CFD simulation study to investigate the risk from hydrogen vehicles in tunnels. International Journal of Hydrogen Energy, 34, 5875–5886. DOI: 10.1016/j.ijhydene.2009.02.004.CrossRefGoogle Scholar
  23. Nozu, T., & Tamura, T. (2012). LES of turbulent wind and gas dispersion in a city. Journal of Wind Engineering and Industrial Aerodynamics, 104-106, 492–499. DOI: 10.1016/j.jweia.2012.02.024.CrossRefGoogle Scholar
  24. Papanikolaou, E., Venetsanos, A. G., Cerchiara, G. M., Carcassi, M., & Markatos, N. (2011). CFD simulations on small hydrogen releases inside a ventilated facility and assessment of ventilation efficiency. International Journal of Hydrogen Energy, 36, 2597–2605. DOI: 10.1016/j.ijhydene.2010.04.119.CrossRefGoogle Scholar
  25. Pontiggia, M., Derudi, M., Alba, M., Scaioni, M., & Rota, R. (2010). Hazardous gas releases in urban areas: Assessment of consequences through CFD modelling. Journal of Hazardous Materials, 176, 589–596. DOI: 10.1016/j.jhazmat.2009.11.070.CrossRefGoogle Scholar
  26. Reichrath, S., & Davies, T. W. (2002). Computational fluid dynamics simulations and validation of the pressure distribution on the roof of a commercial multi-span Venlotype glasshouse. Journal of Wind Engineering and Industrial Aerodynamics, 90, 139–149. DOI: 10.1016/s0167-6105(01)00184-2.CrossRefGoogle Scholar
  27. Scargiali, F., Di Rienzo, E., Ciofalo, M., Grisafi, F., & Brucato, A. (2005). Heavy gas dispersion modelling over a topographically complex mesoscale: A CFD based approach. Process Safety and Environmental Protection, 83, 242–256. DOI: 10.1205/psep.04073.CrossRefGoogle Scholar
  28. Sklavounos, S., & Rigas, F. (2004). Validation of turbulence models in heavy gas dispersion over obstacles. Journal of Hazardous Materials, 108, 9–20. DOI: 10.1016/j.jhazmat.2004.01.005.CrossRefGoogle Scholar
  29. Wieringa, J. (1992). Updating the Davenport roughness classification. Journal of Wind Engineering and Industrial Aerodynamics, 41, 357–368. DOI: 10.1016/0167-6105(92)90434-c.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2013

Authors and Affiliations

  1. 1.Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food TechnologySlovak University of Technology in BratislavaBratislavaSlovakia

Personalised recommendations