Skip to main content
Log in

Efficacy of zinc and tourmaline in mitigating corrosion of carbon steel in non-flow mode

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Laboratory corrosion immersion tests were carried out to investigate the effectiveness of a physical water treatment (PWT) using zinc and ceramic tourmaline-based catalytic materials for the control of carbon steel corrosion in acidic still water (i.e., pH 4.5–5). The tests were carried out at different water temperatures over 168 h. Our results showed a maximum of 22 % reduction in the corrosion rate using PWT in comparison with the control case. Furthermore, the corrosion products depicted more agglomerated particles after the PWT treatment. In both cases, differences were observed in the crystal structures, showing in general lower corrosion activity when PWT was used. The present results could find potential applications in water distribution systems and where metallic materials are exposed to stagnant acidic water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali, M. R., Mustafa, C. M., & Habib, M. (2009). Effect of molybdate, nitrite and zinc ions on the corrosion inhibition of mild steel in aqueous chloride media containing cupric ions. Journal of Scientific Research, 1, 82–91. DOI: 10.3329/jsr.v1i1.1053.

    CAS  Google Scholar 

  • Amarjargal, A., Tijing, L. D., Ruelo, M. T. G., Park, C. H., Pant, H. R., Vista, F. P., Lee, D. H., & Kim, C. S. (2013). Inactivation of bacteria in batch suspension by fluidized ceramic tourmaline nanoparticles under oscillating radio frequency electric fields. Ceramics International, 39, 2141–2145. DOI: 10.1016/j.ceramint.2012.07.070.

    Article  CAS  Google Scholar 

  • Amin, M. A., & Khaled, K. F. (2010). Monitoring corrosion and corrosion control of iron in HCl by non-ionic surfactants of the TRITON-X series — Part I. Tafel polarisation, ICP-AES and EFM studies. Corrosion Science, 52, 1762–1770. DOI: 10.1016/j.corsci.2009.12.033.

    Article  CAS  Google Scholar 

  • Amin, M. A., Ahmed, M. A., Arida, H. A., Kandemirli, F., Saracoglu, M., Arslan, T., & Basaran, M. A. (2011). Monitoring corrosion and corrosion control of iron in HCl by nonionic surfactants of the TRITON-X series — Part III. Immersion time effects and theoretical studies. Corrosion Science, 53, 1895–1909. DOI: 10.1016/j.corsci.2011.02.007.

    Article  CAS  Google Scholar 

  • ASTM G1-03 (2011). Standard practice for preparing, cleaning, and evaluating corrosion test specimens. West Conshohocken, PA, USA: American Society for Testing and Materials. DOI: 10.1520/g0001-03r11.

    Google Scholar 

  • Biomorgi, J., Hernández, S., Marín, J., Rodriguez, E., Lara, M., & Viloria, A. (2012). Internal corrosion studies in hydrocarbons production pipelines located at Venezuelan Northeastern. Chemical Engineering Research and Design, 90, 1159–1167 DOI: 10.1016/j.cherd.2011.12.013.

    Article  CAS  Google Scholar 

  • Chaves, I. A., & Melchers, R. E. (2011). Pitting corrosion in pipeline steel weld zones. Corrosion Science, 53, 4026–4032. DOI: 10.1016/j.corsci.2011.08.005.

    Article  CAS  Google Scholar 

  • Hassan, H. H. (2007). Inhibition of mild steel corrosion in hydrochloric acid solution by triazole derivatives: Part II: Time and temperature effects and thermodynamic treatments. Electrochimica Acta, 53, 1722–1730. DOI: 10.1016/j.electacta.2007.08.021.

    Article  CAS  Google Scholar 

  • Javaherdashti, R. (2000). How corrosion affects industry and life. Anti-Corrosion Methods and Materials, 47, 30–34. DOI: 10.1108/00035590010310003.

    Article  Google Scholar 

  • Liang, J. S., Meng, J. P., Liang, G. C., Feng, Y. W., & Ding, Y. (2006). Preparation and photocatalytic activity of composite films containing clustered TiO2 particles and mineral tourmaline powders. Transactions of Nonferrous Metals Society of China, 16, s542–s546. DOI: 10.1016/s1003-6326(06)60253-7.

    Article  Google Scholar 

  • Melidis, P., Sanozidou, M., Mandusa, A., & Ouzounis, K. (2007). Corrosion control by using indirect methods. Desalination, 213, 152–158. DOI: 10.1016/j.desal.2006.03.606.

    Article  CAS  Google Scholar 

  • Mohebbi, H., & Li, C. Q. (2011). Experimental investigation on corrosion of cast iron pipes. International Journal of Corrosion, 2011, 506501. DOI: 10.1155/2011/506501.

    Article  Google Scholar 

  • Neville, A., & Wang, C. (2009). Erosion-corrosion mitigation by corrosion inhibitors. An assessment of mechanisms. Wear, 267, 195–203. DOI: 10.1016/j.wear.2009.01.038.

    CAS  Google Scholar 

  • Patel, N. S., Jauhari, S., & Mehta, G. N. (2010). 1,7′-dimethyl-2′-propyl-1H,3′H-2,5′-bibenzo[d]imidazole as a corrosion inhibitor of mild steel in 1 M HCl. Chemical Papers, 64, 51–55. DOI: 10.2478/s11696-009-0096-5.

    Google Scholar 

  • Popova, A. (2007). Temperature effect on mild steel corrosion in acid media in presence of azoles. Corrosion Science, 49, 2144–2158. DOI: 10.1016/j.corsci.2006.10.020.

    Article  CAS  Google Scholar 

  • Raja, P. B., & Sethuraman, M. G. (2008). Natural products as corrosion inhibitor for metals in corrosive media — A review. Materials Letters, 62, 113–116. DOI: 10.1016/j.matlet.2007.04.079.

    Article  CAS  Google Scholar 

  • Salasi, M., Shahrabi, T., Roayaei, E., & Aliofkhazraei, M. (2007). The electrochemical behaviour of environment-friendly inhibitors of silicate and phosphonate in corrosion control of carbon steel in soft water media. Materials Chemistry and Physics, 104, 183–190. DOI: 10.1016/j.matchemphys.2007.03.008.

    Article  CAS  Google Scholar 

  • Sarin, P., Snoeyink, V. L., Bebee, J., Kriven, W. M., & Clement, J. A. (2001). Physico-chemical characteristics of corrosion scales in old iron pipes. Water Research, 35, 2961–2969. DOI: 10.1016/s0043-1354(00)00591-1.

    Article  CAS  Google Scholar 

  • Somerscales, E. F. C. (1997). Fundamentals of corrosion fouling. Experimental Thermal and Fluid Science, 14, 335–355. DOI: 10.1016/s0894-1777(96)00136-7.

    Article  CAS  Google Scholar 

  • Świetlik, J., Raczyk-Stanisławiak, U., Piszora, P., & Nawrocki, J. (2012). Corrosion in drinking water pipes: The importance of green rusts. Water Research, 46, 1–10. DOI: 10.1016/j.watres.2011.10.006.

    Article  Google Scholar 

  • Tao, D., Chen, G. L., & Parekh, B. K. (2005). Corrosion protection of mild carbon steel media in phosphate grinding mill using impressed current technology. Minerals Engineering, 18, 481–488. DOI: 10.1016/j.mineng.2004.08.003.

    Article  CAS  Google Scholar 

  • Thornhill, R. S. (1945). Zinc, manganese, and chromic salts as corrosion inhibitors. Industrial & Engineering Chemistry, 37, 706–708. DOI: 10.1021/ie50428a011.

    Article  CAS  Google Scholar 

  • Tijing, L. D., Kim, H. Y., Lee, D. H., Kim, C. S., & Cho, Y. I. (2010). Physical water treatment using RF electric fields for the mitigation of CaCO3 fouling in cooling water. International Journal of Heat and Mass Transfer, 53, 1426–1437. DOI: 10.1016/j.ijheatmasstransfer.2009.12.009.

    Article  CAS  Google Scholar 

  • Tijing, L. D., Lee, D. H., Kim, D. W., Cho, Y. I., & Kim, C. S. (2011a). Effect of high-frequency electric fields on calcium carbonate scaling. Desalination, 279, 47–53. DOI: 10.1016/j.desal.2011.05.072.

    Article  CAS  Google Scholar 

  • Tijing, L. D., Yu, M. H., Kim, C.H., Amarjargal, A., Lee, Y. C., Lee, D. H., Kim, D. W., & Kim, S. C. (2011b). Mitigation of scaling in heat exchangers by physical water treatment using zinc and tourmaline. Applied Thermal Engineering, 31, 2025–2031. DOI: 10.1016/j.applthermaleng.2011.03.011.

    Article  CAS  Google Scholar 

  • Wu, K. H., Zhu, L. Q., Li, W. P., & Liu, H. C. (2010). Effect of Ca2+ and Mg2+ on corrosion and scaling of galvanized steel pipe in simulated geothermal water. Corrosion Science, 52, 2244–2249. DOI: 10.1016/j.corsci.2010.03.023.

    Article  CAS  Google Scholar 

  • Xia, M. S., Hu, C. H., & Zhang, H. M. (2006). Effects of tourmaline addition on the dehydrogenase activity of Rhodopseudomonas palustris. Process Biochemistry, 41, 221–225. DOI: 10.1016/j.procbio.2005.05.012.

    Article  CAS  Google Scholar 

  • Yu, L. S., Liang, L., Liu, S. W., Lv, Y. Y., Lin, J. Z., & Li, H. Q. (2011). Cathodal polarization plus weighing to quickly evaluate scale inhibitors. Chemical Engineering Research and Design, 89, 1056–1060. DOI: 10.1016/j.cherd.2010.12.007.

    Article  CAS  Google Scholar 

  • Zhang, Z., Stout, J. E., Yu, V. L., & Vidic, R. (2008). Effect of pipe corrosion scales on chlorine dioxide consumption in drinking water distribution systems. Water Research, 42, 129–136. DOI: 10.1016/j.watres.2007.07.054.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leonard D. Tijing, Chan-Hee Park, Dong-Hwan Lee or Cheol Sang Kim.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tijing, L.D., Ruelo, M.T.G., Park, CH. et al. Efficacy of zinc and tourmaline in mitigating corrosion of carbon steel in non-flow mode. Chem. Pap. 67, 1304–1310 (2013). https://doi.org/10.2478/s11696-013-0387-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0387-8

Keywords

Navigation