Advertisement

Chemical Papers

, Volume 67, Issue 8, pp 1103–1108 | Cite as

Antibacterial properties of polyaniline-silver films

  • Zdenka Kucekova
  • Vera Kasparkova
  • Petr HumpolicekEmail author
  • Petra Sevcikova
  • Jaroslav Stejskal
Original Paper

Abstract

In situ polymerised thin polyaniline (PANI) films produced on polystyrene dishes were tested for their antibacterial activity with respect to Escherichia coli and Staphylococcus aureus, representing both gram-positive and gram-negative bacteria. PANI films were subsequently used for the reduction of silver ions to metallic Ag. PANI salt and base in original forms and after the deposition of Ag were studied. PANI salt showed a significant antibacterial effect against both bacteria strains while the efficacy of neat PANI base was only marginal. After the Ag deposition, the PANI base exhibited different levels of antibacterial effect depending on the type of the bacterial strain; the growth of gram-positive Staphylococcus aureus was inhibited depending on the Ag concentration on the film, while Escherichia coli remained uninfluenced. Efficacy of the PANI salt with deposited Ag against both bacteria strains was comparable with that of PANI alone and was not affected by the Ag concentration. The results show that Ag deposition can be a suitable method for the preparation of PANI base films with improved antibacterial properties.

Keywords

polyaniline silver antibacterial properties Escherichia coli Staphylococcus aureus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bílek, F., Křížová, T., & Lehocky, M. (2011). Preparation of active antibacterial LDPE surface through multistep physicochemical approach: I. Allylamine grafting, attachment of antibacterial agent and antibacterial activity assessment. Colloids and Surfaces B: Biointerfaces, 88, 440–447. DOI: 10.1016/j.colsurfb.2011.07.027.CrossRefGoogle Scholar
  2. Blinova, N. V., Sapurina, I., Klimović, J., & Stejskal, J. (2005). The chemical and colloidal stability of polyaniline dispersions. Polymer Degradation and Stability, 88, 428–434. DOI: 10.1016/j.polymdegradstab.2004.11.014.CrossRefGoogle Scholar
  3. Gizdavic-Nikolaidis, M. R., Bennett, J. R., Swift, S., Easteal, A. J., & Ambrose, M. (2011). Broad spectrum antimicrobial activity of functionalized polyanilines. Acta Biomaterialia, 7, 4204–4209. DOI: 10.1016/j.actbio.2011.07.018.CrossRefGoogle Scholar
  4. Gizdavic-Nikolaidis, M. R., Bennett, J., Zujovic, Z., Swift, S., & Bowmaker, G. A. (2012). Characterization and antimicrobial efficacy of acetone extracted aniline oligomers. Synthetic Metals, 162, 1114–1119. DOI: 10.1016/j.synthmet.2012.04.031.CrossRefGoogle Scholar
  5. Humpolicek, P., Kasparkova, V., Saha, P., & Stejskal, J. (2012). Biocompatibility of polyaniline. Synthetic Metals, 162, 722–727. DOI: 10.1016/j.synthmet.2012.02.024.CrossRefGoogle Scholar
  6. Jia, Q., Shan, S., Jiang, L., Wang, Y., & Li, D. (2012). Synergetic antimicrobial effects of polyaniline combined with silver nanoparticles. Journal of Applied Polymer Science, 125, 3560–3566. DOI: 10.1002/app.36257.CrossRefGoogle Scholar
  7. Kelly, F. M., Johnston, J. H., Borrmann, T., & Richardson, M. J. (2007). Functionalised hybrid materials of conducting polymers with individual fibres of cellulose. European Journal of Inorganic Chemistry, 2007, 5571–5577. DOI: 10.1002/ejic.200700608.CrossRefGoogle Scholar
  8. Lansdown, A. B. G. (2002). Silver I: its antibacterial properties and mechanism of action. Journal of Wound Care, 11, 125–130.Google Scholar
  9. Liang, X., Sun, M., Li, L., Qiao, R., Chen, K., Xiao, Q., & Xu, F. (2012). Preparation and antibacterial activities of polyaniline/Cu0.05Zn0.95O nanocomposites. Dalton Transactions, 41, 2804–2811. DOI: 10.1039/c2dt11823h.CrossRefGoogle Scholar
  10. Nabi, S. A., Shahadat, M., Bushra, R., Oves, M., & Ahmed, F. (2011). Synthesis and characterization of polyanilineZr (IV) sulphosalicylate composite and its applications (1) electrical conductivity, and (2) antimicrobial activity studies. Chemical Engineering Journal, 173, 706–714. DOI: 10.1016/j.cej.2011.07.081.CrossRefGoogle Scholar
  11. Nesher, G., Serror, M., Avnir, D., & Marom, G. (2011). Silver coated vapor-grown-carbon nanofibers for effective reinforcement of polypropylene-polyaniline. Composites Science and Technology, 71, 152–159. DOI: 10.1016/j.compscitech.2010.11.005.CrossRefGoogle Scholar
  12. Pelíšková, M., Vilčáková, J., Moučka, R., Sáha, P., Stejskal, J., & Quadrat, O. (2007). Effect of coating of graphite particles with polyaniline base on charge transport in epoxy-resin composites. Journal of Materials Science, 42, 4942–4946. DOI: 10.1007/s10853-006-0591-9.CrossRefGoogle Scholar
  13. Prabhakar, P. K., Raj, S., Anuradha, P. R., Sawant, S. N., & Doble, M. (2011). Biocompatibility studies on polyaniline and polyaniline-silver nanoparticle coated polyurethane composite. Colloids and Surfaces B: Biointerfaces, 86, 146–153. DOI: 10.1016/j.colsurfb.2011.03.033.CrossRefGoogle Scholar
  14. Radheshkumar, C., & Münstedt, H. (2005). Morphology and mechanical properties of antimicrobial polyamide/silver composites. Materials Letters, 59, 1949–1953. DOI: 10.1016/j. matlet.2005.02.033.CrossRefGoogle Scholar
  15. Seshadri, D. T., & Bhat, N. V. (2005). Use of polyaniline as an antimicrobial agent in textiles. Indian Journal of Fibre & Textile Research, 30, 204–206.Google Scholar
  16. Sharma, V. K., Yngard, R. A., & Lin, Y. (2009). Silver nanoparticles: Green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 145, 83–96. DOI: 10.1016/j.cis.2008.09.002.CrossRefGoogle Scholar
  17. Shi, N., Guo, X., Jing, H., Gong, J., Sun, C., & Yang, K. (2006). Antibacterial effect of the conducting polyaniline. Journal of Materials Science and Technology, 22, 289–290.Google Scholar
  18. Shi, Z., Zhou, H., Qing, X., Dai, T., & Lu, Y. (2012). Facile fabrication and characterization of poly(tetrafluoroethylene) @polypyrrole/nano-silver composite mambranes with conducting and antimicrobial property. Applied Surface Science, 258, 6359–6365. DOI: 10.1016/j.apsusc.2012.03.040.CrossRefGoogle Scholar
  19. Stejskal, J., & Gilbert, R. G. (2002). Polyaniline. Preparation of a conducting polymer (IUPAC Technical Report). Pure and Applied Chemistry, 74, 857–867. DOI: 10.1351/pac200274050857.CrossRefGoogle Scholar
  20. Stejskal, J., & Sapurina, I. (2005). Polyaniline: Thin films and colloidal dispersions (IUPAC Technical Report). Pure and Applied Chemistry, 77, 815–826. DOI: 10.1351/pac200577050815.CrossRefGoogle Scholar
  21. Stejskal, J., Trchová, M., Kovářová, J., Prokeš, J., & Omastová, M. (2008). Polyaniline-coated cellulose fibers decorated with silver nanoparticles. Chemical Papers, 62, 181–186. DOI: 10.2478/s11696-008-0009-z.CrossRefGoogle Scholar
  22. Stejskal, J., Trchová, M., Brožová, L., & Prokeš, J. (2009). Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites. Chemical Papers, 63, 77–83. DOI: 10.2478/s11696-008-0086-z.CrossRefGoogle Scholar
  23. Stejskal, J., Sapurina, I., & Trchová, M. (2010). Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 35, 1420–1481. DOI: 10.1016/j.progpolymsci.2010.07.006.CrossRefGoogle Scholar
  24. Tamboli, M. S., Kulkarni, M. V., Patil, R. H., Gade, W. N., Navale, S. C., & Kale, B. B. (2012). Nanowires of silver-polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent. Colloids and Surfaces B: Biointerfaces, 92, 35–41. DOI: 10.1016/j.colsurfb.2011.11.006.CrossRefGoogle Scholar
  25. Zhao, C., Li, L. Y., Guo, M. M., & Zheng, J. (2012). Functional polymer thin films designed for antifouling materials and biosensors. Chemical Papers, 66, 323–339. DOI: 10.2478/s11696-012-0147-1.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2013

Authors and Affiliations

  • Zdenka Kucekova
    • 1
    • 3
  • Vera Kasparkova
    • 3
    • 2
  • Petr Humpolicek
    • 1
    • 3
    Email author
  • Petra Sevcikova
    • 2
  • Jaroslav Stejskal
    • 4
  1. 1.Polymer CentreTomas Bata University in ZlinZlinCzech Republic
  2. 2.Department of Fat, Surfactant and Cosmetics Technology, Faculty of TechnologyTomas Bata University in ZlinZlinCzech Republic
  3. 3.Centre of Polymer Systems, Polymer CentreTomas Bata University in ZlinZlinCzech Republic
  4. 4.Institute of Macromolecular ChemistryAcademy of Sciences of the Czech RepublicPrague 6Czech Republic

Personalised recommendations