Skip to main content
Log in

Effect of flow-rate on ethanol separation in membrane distillation process

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The separation of diluted ethanol solutions and fermentation broths by membrane distillation was investigated. The influence of stream flow-rate on the ethanol flux was studied. An evaluation of the process conditions on the separation degree of ethanol was performed with the application of hydrophobic capillary membranes composed of polypropylene. By removing the alcohol via membrane distillation, it is possible to achieve a higher content of ethanol in the permeate than that in the broth. The enrichment coefficient amounted to 4–6.5, and decreased with an increase of the ethanol concentration in the broth. It was found that the flow-rate affects the value of the enrichment coefficient. A positive influence of carbon dioxide on the ethanol transport through the capillary membrane was observed. The evolution of CO2 bubbles from the broth increases the stream turbulence, probably enhancing the alcohol concentration in the layer adjacent to the membrane surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai, F.W., Anderson, W. A., & Moo-Young, M. (2008). Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnology Advances, 26, 89–105. DOI: 10.1016/j.biotechadv.2007.09.002.

    Article  CAS  Google Scholar 

  • Banat, F. A., & Simandl, J. (1999a). Membrane distillation for dilute ethanol separation from aqueous streams. Journal of Membrane Science, 163, 333–348. DOI: 10.1016/s0376-7388(99)00178-7.

    Article  CAS  Google Scholar 

  • Banat, F. A., Al-Rub, F. A., & Shannag, M. (1999b). Modeling of dilute ethanol-water mixture separation by membrane distillation. Separation and Purification Technology, 16, 119–131. DOI: 10.1016/s1383-5866(98)00117-8.

    Article  CAS  Google Scholar 

  • Barancewicz, M., & Gryta, M. (2012). Ethanol production in a bioreactor with an integrated membrane distillation module. Chemical Papers, 66, 85–91. DOI: 10.2478/s11696-011-0088-0.

    Article  CAS  Google Scholar 

  • Cardona, C. A., & Sánchez, Ó. J. (2007). Fuel ethanol production: Process design trends and integration opportunities. Bioresource Technology, 98, 2415–2457. DOI: 10.1016/j.biortech.2007.01.002.

    Article  CAS  Google Scholar 

  • Calibo, R. L., Matsumura, M., & Kataoka, H. (1989). Continuous ethanol fermentation of concentrated sugar solutions coupled with membrane distillation using a PTFE module. Journal of Fermentation and Bioengineering, 67, 40–45. DOI: 10.1016/0922-338x(89)90084-6.

    Article  CAS  Google Scholar 

  • Choi, G. W., Kang, H. W., & Moon, S. K. (2009). Repeatedbatch fermentation using flocculent hybrid, Saccharomyces cerevisiae CHFY0321 for efficient production of bioethanol. Applied Microbiology and Biotechnology, 84, 261–269. DOI: 10.1007/s00253-009-1946-3.

    Article  CAS  Google Scholar 

  • Demirbas, A. (2007). Progress and recent trends in biofuels. Progress in Energy and Combustion Science, 33, 1–18. DOI: 10.1016/j.pecs.2006.06.001.

    Article  CAS  Google Scholar 

  • García-Payo, M. C., Izquierdo-Gil, M. A., & Fernández-Pineda, C. (2000). Air gap membrane distillation of aqueous alcohol solutions. Journal of Membrane Science, 169, 61–80. DOI: 10.1016/s0376-7388(99)00326-9.

    Article  Google Scholar 

  • Gryta, M., Morawski, A. W., & Tomaszewska, M. (2000). Ethanol production in membrane distillation bioreactor. Catalysis Today, 56, 159–165. DOI: 10.1016/s0920-5861(99)00272-2.

    Article  CAS  Google Scholar 

  • Gryta, M. (2001). The fermentation process integrated with membrane distillation. Separation and Purification Technology, 24, 283–296. DOI: 10.1016/s1383-5866(01)00132-0.

    Article  CAS  Google Scholar 

  • Gryta, M. (2008). Fouling in direct contact membrane distillation process. Journal of Membrane Science, 325, 383–394. DOI: 10.1016/j.memsci.2008.08.001.

    Article  CAS  Google Scholar 

  • Gryta, M. (2012) Wettability of polypropylene capillary membranes during the membrane distillation process. Chemical Papers, 66, 92–98. DOI: 10.2478/s11696-011-0096-0.

    Article  CAS  Google Scholar 

  • Gyamerah, M., & Glover, J. (1996). Production of ethanol by continuous fermentation and liquid-liquid extraction. Journal of Chemical Technology and Biotechnology, 66, 145–152. DOI: 10.1002/(SICI)1097-4660(199606) 66: 2<145::AIDJCTB484>3.0.CO;2-2.

    Article  CAS  Google Scholar 

  • Izquierdo-Gil, M. A., & Jonsson, G. (2003). Factors affecting flux and ethanol separation performance in vacuum membrane distillation (VMD). Journal of Membrane Science, 214, 113–130. DOI: 10.1016/s0376-7388(02)00540-9.

    Article  CAS  Google Scholar 

  • Kaewkannetra, P., Chutinate, N., Moonamart, S., Kamsan, T., & Chiu, T. Y. (2011). Separation of ethanol from ethanol-water mixture and fermented sweet sorghum juice using pervaporation membrane reactor. Desalination, 271, 88–91. DOI: 1016/j.desal.2010.12.012.

    Article  CAS  Google Scholar 

  • Kolesárová, N., Hutňan, M., Špalková, V., Kuffa, R., & Bodík, I. (2011). Anaerobic treatment of biodiesel by-products in a pilot scale reactor. Chemical Papers, 65, 447–453. DOI: 10.2478/s11696-011-0035-0.

    Article  Google Scholar 

  • Lee, C. H., & Hong, W. H. (2001). Effect of operating variables on the flux and selectivity in sweep gas membrane distillation for dilute aqueous isopropanol. Journal of Membrane Science, 188, 79–86. DOI: 10.1016/s0376-7388(01)00373-8.

    Article  CAS  Google Scholar 

  • Maiorella, B. L., Blanch, H. W., & Wilke, C. R. (1984). Economic evaluation of alternative ethanol fermentation processes. Biotechnology and Bioengineering, 26, 1003–1025. DOI: 10.1002/bit.260260902.

    Article  CAS  Google Scholar 

  • Mori, Y., & Inaba, T. (1990). Ethanol production from starch in a pervaporation membrane bioreactor using Clostridium thermohydrosulfuricum. Biotechnology and Bioengineering, 36, 849–853. DOI: 10.1002/bit.260360815.

    Article  CAS  Google Scholar 

  • Nakao, S. i., Saitoh, F., Asakura, T., Toda, K., & Kimura, S. (1987). Continuous ethanol extraction by pervaporation from a membrane bioreactor. Journal of Membrane Science, 30, 273–287. DOI: 10.1016/s0376-7388(00)80123-4.

    Article  CAS  Google Scholar 

  • O’Brien, D. J., Roth, L. H., & McAloon, A. J. (2000). Ethanol production by continuous fermentation-pervaporation: a preliminary economic analysis. Journal of Membrane Science, 166, 105–111. DOI: 10.1016/s0376-7388(99)00255-0.

    Article  Google Scholar 

  • Park, B. G., Lee, W. G., Chang, Y. K., & Chang, H. N. (1999). Long-term operation of continuous high cell density culture of Saccharomyces cerevisiae with membrane filtration and on-line cell concentration monitoring. Bioprocess Engineering, 21, 97–100. DOI: 10.1007/pl00009070.

    CAS  Google Scholar 

  • Ponton, J. W. (2009). Biofuels: Thermodynamic sense and nonsense. Journal of Cleaner Production, 17, 896–899. DOI: 10.1016/j.jclepro.2009.02.003.

    Article  Google Scholar 

  • Sassner, P., Galbe, M., & Zacchi, G. (2008). Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass and Bioenergy, 32, 422–430. DOI: 10.1016/j.biombioe.2007.10.014.

    Article  CAS  Google Scholar 

  • Sonntag, H. (1977). Lehrbuch der Kolloidwissenschaft. Berlin, Germany: VEB Deutscher Verlag der Wissenschaften. (in German)

    Google Scholar 

  • Szitkai, Z., Lelkes, Z., Rev, E., & Fonyo, Z. (2002). Optimization of hybrid ethanol dehydration systems. Chemical Engineering and Processing: Process Intensification, 41, 631–646. DOI: 10.1016/s0255-2701(01)00192-1.

    Article  CAS  Google Scholar 

  • Takaya, M., Matsumoto, N., & Yanase, H. (2002). Characterization of membrane bioreactor for dry wine production. Journal of Bioscience and Bioengineering, 93, 240–244. DOI: 10.1016/s1389-1723(02)80021-4.

    CAS  Google Scholar 

  • Uragami, T. (2006). Concentration of aqueous ethanol solutions by porous poly(dimethylsiloxane) membranes during temperature-difference controlling evapomeation. Desalination, 193, 335–343. DOI: 10.1016/j.desal.2005.09.026.

    Article  CAS  Google Scholar 

  • Wu, Y., Xiao, Z. Y., Huang, W. X., & Zhong, Y. H. (2005). Mass transfer in pervaporation of active fermentation broth with a composite PDMS membrane. Separation and Purification Technology, 42, 47–53. DOI: 10.1016/j.seppur.2004.06.003.

    Article  CAS  Google Scholar 

  • Yu, H., Yang, X., Wang, R., & Fane, A. G. (2011). Numerical simulation of heat and mass transfer in direct membrane distillation in a hollow fiber module with laminar flow. Journal of Membrane Science, 384, 107–116. DOI: 10.1016/j.memsci.2011.09.011.

    Article  CAS  Google Scholar 

  • Yu, H., Yang, X., Wang, R., & Fane, A. G. (2012). Analysis of heat and mass transfer by CFD for performance enhancement in direct contact membrane distillation. Journal of Membrane Science, 405–406, 38–47. DOI: 10.1016/j.memsci.2012.02.035.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Gryta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gryta, M. Effect of flow-rate on ethanol separation in membrane distillation process. Chem. Pap. 67, 1201–1209 (2013). https://doi.org/10.2478/s11696-013-0382-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0382-0

Keywords

Navigation