Advertisement

Chemical Papers

, Volume 67, Issue 10, pp 1285–1292 | Cite as

Comparison of anthocyanins present in grapes of Vitis vinifera L. varieties and interspecific hybrids grown in the Czech Republic

  • Josef Balík
  • Michal Kumšta
  • Otakar RopEmail author
Original Paper

Abstract

Anthocyanins present in the grapes of nine grapevine (Vitis vinifera L.) varieties and ten interspecific hybrids were compared. Total anthocyanin levels were determined in fresh grapes and the values ranged from 0.50 g kg−1 to 4.99 g kg−1. A total of twenty-two different anthocyanins were identified. Malvidin 3-glucoside was the most abundant anthocyanin, with concentrations ranging from 30 % to 64 % of the totals observed. The ratio of acetylated to coumaroylated malvidin and peonidin derivatives ranged from 0.09 (variety: Regent) to 1.34 (variety: Cerason), depending on the variety. Diglucosylated anthocyanins were not found in particular interspecific hybrids such as the teinturier XIV 26–56, Laurot, Merlan, and Nativa.

Keywords

grape Vitis vinifera L. interspecific hybrids teinturier anthocyanins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcalde-Eon, C., Escribano-Bailón, M. T., Santos-Buelga, C., & Rivas-Gonzalo, J. C. (2006). Changes in the detailed pigment composition of red wine during maturity and ageing. A comprehensive study. Analytica Chimica Acta, 563, 238–254. DOI: 10.1016/j.aca.2005.11.028.CrossRefGoogle Scholar
  2. Brar, H. S., Singh, Z., & Swinny, E. (2008). Dynamics of anthocyanin and flavonol profiles in the ‘Crimson Seedless’ grape berry skin during development and ripening. Scientia Horticulturae, 117, 349–356. DOI: 10.1016/j.scienta.2008.05.007.CrossRefGoogle Scholar
  3. Burns, J., Mullen, W., Landrault, N., Teissedre, P. L., Lean, M. E. J., & Crozier, A. (2002). Variations in the profile and content of anthocyanins in wines made from Cabernet Sauvignon and hybrid grapes. Journal of Agricultural and Food Chemistry, 50, 4096–4102. DOI: 10.1021/jf011233s.CrossRefGoogle Scholar
  4. De Rosso, M., Tonidandel, L., Larcher, R., Nicolini, G., Ruggeri, V., Dalla Vedova, A., De Marchi, F., Gardiman, M., & Flamini, R. (2012). Study of anthocyanic profiles of twentyone hybrid grape varieties by liquid chromatography and precursor-ion mass spectrometry. Analytica Chimica Acta, 732, 120–129. DOI: 10.1016/j.aca.2011.10.045.CrossRefGoogle Scholar
  5. Downey, M. O., Dokoozlian, N. K., & Krstic, M. P. (2006). Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: A review of recent research. American Journal of Enology and Viticulture, 57, 257–268.Google Scholar
  6. Drdak, M., Altamirano, R. C., Rajniakova, A., Simko, P., Malik, F., Balik, J., & Benkovska, D. (1991). Vorkommen von Anthocyan-Farbstoffen in blauen Traubensorten. Mitteilungen Klosterneuburg, 41, 190–193. (in German)Google Scholar
  7. Fernández-López, J. A., Hidalgo, V., Almela, L., & López Roca, J. M. (1992). Quantitative changes in anthocyanin pigments of Vitis vinifera cv monastrell during maturation. Journal of the Science of Food and Agriculture, 58, 153–155. DOI: 10.1002/jsfa.2740580127.CrossRefGoogle Scholar
  8. Fuleki, T., & Francis, F. J. (1968). Quantitative methods for anthocyanins. 2. Determination of total anthocyanin and degradation index for cranberry juice. Journal of Food Science, 33, 78–83. DOI: 10.1111/j.1365-2621.1968.tb00888.x.CrossRefGoogle Scholar
  9. García-Beneytez, E., Revilla, E., & Cabello, F. (2002). Anthocyanin pattern of several red grape cultivars and wines made from them. European Food Research and Technology, 215, 32–37. DOI: 10.1007/s00217-002-0526-x.CrossRefGoogle Scholar
  10. García-Beneytez, E., Cabello, F., & Revilla, E. (2003). Analysis of grape and wine anthocyanins by HPLC-MS. Journal of Agricultural and Food Chemistry, 51, 5622–5629. DOI: 10.1021/jf0302207.CrossRefGoogle Scholar
  11. Goldy, R. G., Ballinger, W. E., & Maness, E. P. (1986). Fruit anthocyanin content of some Euvitis × Vitis rotundifolia hybrids. Journal of the American Society for Horticultural Science, 111, 955–960.Google Scholar
  12. González-Neves, G., Franco, J., Barreiro, L., Gil, G., Moutounet, M., & Carbonneau, A. (2007). Varietal differentiation of Tannat, Cabernet-Sauvignon and Merlot grapes and wines according to their anthocyanic composition. European Food Research and Technology, 225, 111–117. DOI: 10.1007/s00217-006-0388-8.CrossRefGoogle Scholar
  13. González-SanJosé, M. L., & Diez, C. (1992). Relationship between anthocyanins and sugars during the ripening of grape berries. Food Chemistry, 43, 193–197. DOI: 10.1016/0308-8146(92)90172-x.CrossRefGoogle Scholar
  14. He, J. J., Liu, Y. X., Pan, Q. H., Cui, X. Y., & Duan, C. Q. (2010). Different anthocyanin profiles of the skin and the pulp of Yan73 (Muscat Hamburg × Alicante Bouschet) grape berries. Molecules, 15, 1141–1153. DOI: 10.3390/molecules15031141.CrossRefGoogle Scholar
  15. Hebrero, E., Garcia-Rodriguez, C., Santos-Buelga, C., & Rivas-Gonzalo, J. C. (1989). Analysis of anthocyanins by high perfomance liquid chromatography-diode array spectroscopy in a hybrid grape variety (Vitis vinifera × Vitis berlandieri 41B). American Journal of Enology and Viticulture, 40, 283–291.Google Scholar
  16. Katalinić, V., Smole Možina, S., Skroza, D., Generalić, I., Abramovič, H., Miloš, M., Ljubenkov, I., Piskernik, S., Pezo, I., Terpinc, P., & Boban, M. (2010). Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia). Food Chemistry, 119, 715–723. DOI: 10.1016/j.foodchem.2009.07.019.CrossRefGoogle Scholar
  17. Kozma, P., Jr. (2000). Winegrape breeding for fungus disease resistance. Acta Horticulturae, 528, 511–516.Google Scholar
  18. Lamikanra, O. (1989). Anthocyanins of Vitis rotundifolia hybrid grapes. Food Chemistry, 33, 225–237. DOI: 10.1016/0308-8146(89)90016-2.CrossRefGoogle Scholar
  19. Manns, D. C., & Mansfield, A. K. (2012). A core-shell column approach to a comprehensive high-performance liquid chromatography phenolic analysis of Vitis vinifera L. and interspecific hybrid grape juices, wines, and other matrices following either solid phase extraction or direct injection. Journal of Chromatography A, 1251, 111–121. DOI: 10.1016/j.chroma.2012.06.045.CrossRefGoogle Scholar
  20. Mazza, G., & Francis, F. J. (1995). Anthocyanins in grapes and grape products. Critical Reviews in Food Science and Nutrition, 35, 341–371. DOI: 10.1080/10408399509527704.CrossRefGoogle Scholar
  21. Mazzuca, P., Ferranti, P., Picariello, G., Chianese, L., & Addeo, F. (2005). Mass spectrometry in the study of anthocyanins and their derivatives: differentiation of Vitis vinifera and hybrid grapes by liquid chromatography/electrospray ionization mass spectrometry and tandem mass spectrometry. Journal of Mass Spectrometry, 40, 83–90. DOI: 10.1002/jms.778.CrossRefGoogle Scholar
  22. Mori, K., Sugaya, S., & Gemma, H. (2005). Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition. Scientia Horticulturae, 105, 319–330. DOI: 10.1016/j.scienta.2005.01.032.CrossRefGoogle Scholar
  23. Orak, H. H. (2007). Total antioxidant activities, phenolics, anthocyanins, polyphenoloxidase activities of selected red grape cultivars and their correlations. Scientia Horticulturae, 111, 235–241. DOI: 10.1016/j.scienta.2006.10.019.CrossRefGoogle Scholar
  24. Papouškovřávek, J., Balík, J., Myjavcová, R., Barták, P., Tománkova, E., & Lemr, K. (2011). Advanced liquid chromatography/mass spectrometry profiling of anthocyanins in relation to set of red wine varieties certified in Czech Republic. Journal of Chromatography A, 1218, 7581–7591. DOI: 10.1016/j.chroma.2011.07.027.CrossRefGoogle Scholar
  25. Revilla, E., García-Beneytez, E., Cabello, F., Martín-Ortega, G., & Ryan, J. M. (2001). Value of high-performance liquid chromatographic analysis of anthocyanins in the differentiation of red grape cultivars and red wines made from them. Journal of Chromatography A, 915, 53–60. DOI: 10.1016/s0021-9673(01)00635-5.CrossRefGoogle Scholar
  26. Revilla, E., García-Beneytez, E., & Cabello, F. (2009). Anthocyanin fingerprint of clones of Tempranillo grapes and wines made with them. Australian Journal of Grape and Wine Research, 15, 70–78. DOI: 10.1111/j.1755-0238.2008.00037.x.CrossRefGoogle Scholar
  27. Timberlake, C. F. (1980). Anthocyanins-occurence, extraction and chemistry. Food Chemistry, 5, 69–80. DOI: 10.1016/ 0308-8146(80)90065-5.CrossRefGoogle Scholar
  28. Zhao, Q., Duan, C. Q., & Wang, J. (2010). Anthocyanins profile of grape berries of Vitis amurensis, its hybrids and their wines. International Journal of Molecular Sciences, 11, 2212–2228. DOI: 10.3390/ijms11052212.CrossRefGoogle Scholar
  29. Zhu, L., Zhang, Y., & Lu, J. (2012). Phenolic contents and composition in skins of red wine grape cultivars mong various genetic backgrounds and originations. International Journal of Molecular Sciences, 13, 3492–3510. DOI: 10.3390/ijms13033492.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2013

Authors and Affiliations

  1. 1.Department of Post-Harvest Technology of Horticultural ProductsFaculty of Horticulture, Mendel University in BrnoLedniceCzech Republic
  2. 2.Department of Viticulture and OenologyFaculty of Horticulture, Mendel University in BrnoLedniceCzech Republic
  3. 3.Department of Food Technology and Microbiology, Faculty of TechnologyTomas Bata University in ZlinZlínCzech Republic

Personalised recommendations