Chemical Papers

, Volume 67, Issue 7, pp 696–702 | Cite as

Effective immobilisation of lipase to enhance esterification potential and reusability

  • Ashok Kumar
  • Vikrant Sharma
  • Prachi Sharma
  • Shamsher S. KanwarEmail author
Original Paper


A commercial lipase, “Lipolase T100”, was immobilised onto silica by means of physical adsorption. The silica-bound lipase was subsequently exposed to 1 vol. % glutaraldehyde (pentane-1,5-dial). The silica was loaded repeatedly with the Lipolase T100 in 0.05 M Tris buffer (pH 8.5) until saturation was achieved. During the 1st, 2nd, 3rd, 4th, and 5th cycles of loading of silica with the enzyme, the protein-binding on the silica achieved 51.73 %, 48.27 %, 26.92 %, 10.73 %, and 4.29 %, respectively. The synthesis of methyl salicylate (methyl 2-hydroxybenzoate) and linalyl ferulate (3,7-dimethylocta-1,6-dien-3-yl 4-hydroxy-3-methoxycinnamate) carried out at 45°C under shaking with mole ratios of 200 mM of acid and 500 mM alcohol in DMSO using 15 mg mL−1 of hyper-activated biocatalyst resulted in yield(s) of 77.2 % of methyl salicylate and 65.3 % of linalyl ferulate in the presence of molecular sieves. The hyper-activated biocatalyst was more efficient than the previously reported silica-bound lipase with minimum leaching of the enzyme from the reaction mixture. The K m and V max of the free (0.142 mM and 38.31 μmol min−1 mL−1, respectively) and silica-bound lipase (0.043 mM and 26.32 μmol min−1 mg−1, respectively) were determined for the hydrolysis of p-NPP. During repeated esterification studies using silica-bound lipase, yields of 50.1 % of methyl salicylate after the 5th cycle, and 53.9 % of linalyl ferulate after the 7th cycle of esterification were recorded. In the presence of molecular sieves (30 mg mL−1) in the reaction mixture, the maximum syntheses of methyl salicylate (77.2 %) and linalyl ferulate (65.3 %) were also observed. In a volumetric batch scale-up, when the reaction volume was increased to 50 mL, 44.9 % and 31.4 % yields of methyl salicylate and linalyl ferulate, respectively, were achieved.


Lipolase T100 silica glutaraldehyde treatment immobilisation esterification DMSO methyl salicylate linalyl ferulate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aulakh, S. S., & Prakash, R. (2010). Optimization of medium and process parameters for the production of lipase from an oil-tolerant Aspergillus sp. (RBD-01). Journal of Basic Microbiology, 50, 37–42. DOI: 10.1002/jobm.200900361.CrossRefGoogle Scholar
  2. Bučko, M., Mislovičová, D., Nahálka, J., Vikartovská, A., Šefčovičová, J., Katrlík, J., Tkčá, J., Gemeiner, P., Lacík, B., Štefuca, V., Polakovič, M., Rosenberg, M., Rebroš, M., Šmogrovičová, D., & Švitel, J. (2012). Immobilization in biotechnology and biorecognition: from macro- to nanoscale systems. Chemical Papers, 66, 983–998. DOI: 10.2478/s11696-012-0226-3.CrossRefGoogle Scholar
  3. Bruno, L. M., Coelho, J. S., Melo, E. H. M., & Lima-Filho, J. L. (2005). Characterization of Mucor meihei lipase immobilised on polysiloxane-polyvinyl alcohol magnetic particles. World Journal of Microbiology & Biotechnology, 21, 189–192. DOI: 10.1007/s11274-004-3321-y.CrossRefGoogle Scholar
  4. Chandel, C., Kumar, A., & Kanwar, S. S. (2011). Enzymatic synthesis of butyl ferulate by silica-immobilised lipase in a non-aqueous medium. Journal of Biomaterials and Nanobiotechnology, 2, 400–408. DOI: 10.4236/jbnb.2011.24049.CrossRefGoogle Scholar
  5. Chiou, S. H., & Wu, W. T. (2005). Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials, 25, 197–204. DOI: 10.1016/s0142-9612(03)00482-4.CrossRefGoogle Scholar
  6. Huang, L., & Cheng, Z. M. (2008). Immobilization of lipase on chemically modified bimodal ceramic foams for olive oil hydrolysis. Chemical Engineering Journal, 144, 103–109. DOI: 10.1016/j.cej.2008.05.015.CrossRefGoogle Scholar
  7. Chen, J. P., & Lin, W. S. (2003). Sol-gel powders and supported sol-gel polymers for immobilization of lipase in ester synthesis. Enzyme and Microbial Technology, 32, 801–811. DOI: 10.1016/s0141-0229(03)00052-8.CrossRefGoogle Scholar
  8. Kanwar, S. S., Kaushal, R. K., Verma, M. L., Kumar, Y., Chauhan, G. S., Gupta, R., & Chimni, S. S. (2005a). Synthesis of ethyl laurate by hydrogel immobilized lipase of Bacillus coagulans MTCC-6375. Indian Journal of Microbiology, 45, 187–193.Google Scholar
  9. Kanwar, S. S., Verma, H. K., Kaushal, R. K., Gupta, R., Chimni, S. S., Kumar, Y., & Chauhan, G. S. (2005b). Effect of solvents and kinetic parameters on synthesis of ethyl propionate catalysed by poly (AAc-co-HPMA-cl-MBAm)-matriximmobilized lipase ofPseudomonas aeruginosa BTS-2. World Journal of Microbiology & Biotechnology, 21, 1037–1044. DOI: 10.1007/s11274-004-7869-3.CrossRefGoogle Scholar
  10. Kharrat, N., Ali, Y. B., Marzouk, S., Gargouri, Y. T., & Karra-Châabouni, M. (2011). Immobilization of Rhizopus oryzae lipase on silica aerogels by adsorption: Comparison with the free enzyme. Process Biochemistry, 46, 1083–1089. DOI: 10.1016/j.procbio.2011.01.029.CrossRefGoogle Scholar
  11. Kumar, A., & Kanwar, S. S. (2011a). Synthesis of ethyl ferulate in organic medium using celite-immobilized lipase. Bioresource Technology, 102, 2162–2167. DOI: 10.1016/j.biortech.2010.10.027.CrossRefGoogle Scholar
  12. Kumar, A., & Kanwar, S. S. (2011b). Synthesis of isopropyl ferulate using silica-immobilized lipase in an organic medium. Enzyme Research, 2011, 718949. DOI: 10.4061/2011/718949.CrossRefGoogle Scholar
  13. Kumar, A., & Kanwar, S. S. (2012a). Lipase production in solid-state fermentation (SSF): Recent developments and biotechnological applications. Dynamic Biochemistry, Process Biotechnology and Molecular Biology, 6(1), 13–27.Google Scholar
  14. Kumar, A., & Kanwar, S. S. (2012b). An innovative approach to immobilize lipase onto natural fiber and its application for the synthesis of 2-octyl ferulate in an organic medium. Current Biotechnology, 1, 241–248. DOI: 10.2174/2211550111201030241.CrossRefGoogle Scholar
  15. Kumar, A., Sharma, P., & Kanwar, S. S. (2012). Lipase catalyzed esters syntheses in organic media: a review. International Journal of Institutional Pharmacy and Life Sciences, 2(2), 91–119.Google Scholar
  16. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.Google Scholar
  17. Nagayama, K., Yamasaki, N., & Imai, M. (2002). Fatty acid esterification catalyzed by Candida rugosa lipase in lecithin microemulsion-based organogels. Biochemical Engineering Journal, 12, 231–236. DOI: 10.1016/s1369-703x(02)00076-1.CrossRefGoogle Scholar
  18. Panzavolta, F., Soro, S., D’Amato, R., Palocci, C., Cernia, E., & Russo, M. V. (2005). Acetylenic polymers as new immobilization matrices for lipolytic enzymes. Journal of Molecular Catalysis B: Enzymatic, 32, 67–76. DOI: 10.1016/j.molcatb.2004.09.011.CrossRefGoogle Scholar
  19. Patil, D., Das, D., & Nag, A. (2011). Enzymatic synthesis and analytical monitoring of terpene ester by 1H NMR spectroscopy. Chemical Papers, 65, 9–15. DOI: 10.2478/s11696-010-0077-8.CrossRefGoogle Scholar
  20. Pires-Cabral, P., da Fonseca, M. M. R., & Ferreira-Dias, S. (2007). Modeling the production of ethyl butyrate catalysed by Candida rugosa lipase immobilised in polyurethane foams. Biochemical Engineering Journal, 33, 148–158. DOI: 10.1016/j.bej.2006.10.015.CrossRefGoogle Scholar
  21. Soni, K., & Madamwar, D. (2001). Ester synthesis by lipase immobilized on silica and microemulsion based organogels (MBGs). Process Biochemistry, 36, 607–611. DOI: 10.1016/s0032-9592(00)00250-8.CrossRefGoogle Scholar
  22. Verma, M. L., Chauhan, G. S., & Kanwar, S. S. (2008). Enzymatic synthesis of isopropyl myristate using immobilized lipase from Bacillus cereus MTCC 8372. Acta Microbiologica et Immunologica Hungarica, 55, 327–342. DOI: 10.1556/AMicr.55.2008.3.4.CrossRefGoogle Scholar
  23. Verma, M. L., & Kanwar, S. S. (2010). Purification and characterization of a low molecular mass alkaliphilic lipase of Bacillus cereus MTCC 8372. Acta Microbiogica et Immunologica Hungarica, 57, 191–197. DOI: 10.1556/AMicr.57.2010.3.4.CrossRefGoogle Scholar
  24. Winkler, U. K., & Stuckmann, M. (1979). Glucogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. Journal of Bacteriology, 138, 663–670.Google Scholar
  25. Xi, W. W., & Xu, J. H. (2005). Preparation of enantiopure (S)-ketoprofen by immobilized Candida rugosa lipase in packed bed reactor. Process Biochemistry, 40, 2161–2166. DOI: 10.1016/j.procbio.2004.08.003.CrossRefGoogle Scholar
  26. Yilmaz, E., Can, K., Sezgin, M., & Yilmaz, M. (2011). Immobilization of Candida rugosa lipase on glass beads for enantioselective hydrolysis of racemic Naproxen methyl ester. Bioresource Technology, 102, 499–506. DOI: 10.1016/j.biortech.2010.08.083.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2013

Authors and Affiliations

  • Ashok Kumar
    • 1
  • Vikrant Sharma
    • 1
  • Prachi Sharma
    • 1
  • Shamsher S. Kanwar
    • 1
    Email author
  1. 1.Department of BiotechnologyHimachal Pradesh UniversityShimlaIndia

Personalised recommendations