Advertisement

Chemical Papers

, Volume 67, Issue 8, pp 1012–1019 | Cite as

Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles

  • Robert MouckaEmail author
  • Miroslav Mrlik
  • Marketa Ilcikova
  • Zdenko Spitalsky
  • Natalia Kazantseva
  • Patrycja Bober
  • Jaroslav Stejskal
Original Paper

Abstract

Statistical copolymers of aniline and p-phenylenediamine, poly(aniline-co-p-phenylenediamine)s, were synthesised by oxidative polymerisation using various oxidants, ammonium peroxydisulphate or silver nitrate. Depending on the choice of oxidant, copolymers or composites with silver particles were obtained. Different molar concentrations of p-phenylenediamine in the reaction mixture provided materials of different conductivities. The influence of both the copolymer composition and the presence of discrete silver particles on the electric and dielectric properties of the system was studied. The results showed a decrease in the conductivity of copolymers and their composites with the silver content compared with the content of standard polyaniline salt. The reduction in conductivity was described in terms of the decreased density of hopping centres due to defects in the copolymer structure. The dielectric relaxations observed were described in terms of their activation energies and were linked to the corresponding conduction mechanism.

Keywords

polyaniline p-phenylenediamine poly(p-phenylenediamine) copolymer silver particles dielectric properties conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blythe, A. R. (1979). Electrical properties of polymers. New York, NY, USA: Cambridge University Press.Google Scholar
  2. Bober, P., Stejskal, J., Trchová, M., Prokeš, J., & Sapurina, I. (2010). Oxidation of aniline with silver nitrate accelerated by p-phenylenediamine a new route to conducting composites. Macromolecules, 43, 10406–10413. DOI: 10.1021/ma101474j.CrossRefGoogle Scholar
  3. Bober, P., Stejskal, J., Trchová, M., & Prokeš, J. (2011). Polyaniline-silver composites prepared by the oxidation of aniline with mixed oxidants, silver nitrate, and ammonium peroxydisulfate: The control of silver content. Polymer, 52, 5947–5952. DOI:10.1016/j.polymer.2011.10.025.CrossRefGoogle Scholar
  4. Capaccioli, S., Lucchesi, M., Rolla, P. A., & Ruggeri, G. (1998). Dielectric response analysis of a conducting polymer dominated by the hopping charge transport. Journal of Physics: Condensed Matter, 10, 5595–5617. DOI: 10.1088/0953-8984/10/25/011.CrossRefGoogle Scholar
  5. Cole, K. S., & Cole, R. H. (1941). Dispersion and absorption in dielectrics I. Alternating current characteristics. The Journal of Chemical Physics, 9, 341–351. DOI: 10.1063/1.1750906.Google Scholar
  6. Dyre, J. C. (1988). The random free-energy barrier model for AC conduction in disordered solids. Journal of Applied Physics, 64, 2456–2468. DOI: 10.1063/1.341681.CrossRefGoogle Scholar
  7. Epstein, A. J., Joo, J., Kohlman, R. S., Du, G., MacDiarmid, A. G., Oh, E. J., Min, Y., Tsukamoto, J., Kaneko, H., & Pouget, J. P. (1994). Inhomogeneous disorder and the modified Drude metallic state of conducting polymers. Synthetic Metals, 65, 149–157. DOI: 10.1016/0379-6779(94)90176-7.CrossRefGoogle Scholar
  8. Epstein, A. J., Lee, W. P., & Prigodin, V. N. (2001). Lowdimensional variable range hopping in conducting polymers. Synthetic Metals, 117, 9–13. DOI: 10.1016/s0379-6779(00)00531-2.CrossRefGoogle Scholar
  9. Hagiwara, T., Demura, T., & Iwata, K. (1987). Synthesis and properties of electrically conducting polymers from aromatic amines. Synthetic Metals, 18, 317–322. DOI: 10.1016/0379-6779(87)90898-8.CrossRefGoogle Scholar
  10. Křivka, I., Prokeš, J., Starykov, O., & Stejskal, J. (2001). AC properties of aniline-1,4-phenylenediamine copolymers. Synthetic Metals, 119, 481–482. DOI: 10.1016/s0379-6779(00)00802-x.CrossRefGoogle Scholar
  11. Mott, N. F., & Davis, E. A. (1979). Electronic processes in non-crystalline materials (2nd ed.). New York, NY, USA: Clarendon Press.Google Scholar
  12. Mzenda, V. M., Goodman, S. A., & Auret, F. D. (2002). Conduction models in polyaniline — the effect of temperature on the current-voltage properties of polyaniline over the temperature range 30 < T(K) < 300. Synthetic Metals, 127, 285–289. DOI: 10.1016/s0379-6779(01)00638-5.CrossRefGoogle Scholar
  13. Prigodin, V. N., Samukhin, A. N., & Epstein, A. J. (2004). Variable range hopping in low-dimensional polymer structures. Synthetic Metals, 141, 155–164. DOI: 10.1016/j.synthmet.2003.09.017.CrossRefGoogle Scholar
  14. Sapurina, I. Y., & Stejskal, J. (2012). Oxidation of aniline with strong and weak oxidants. Russian Journal of General Chemistry, 82, 256–275. DOI:10.1134/s1070363212020168.CrossRefGoogle Scholar
  15. Scher, H., & Zallen, R. (1970). Critical density in percolation processes. The Journal of Chemical Physics, 53, 3759–3761. DOI: 10.1063/1.1674565.CrossRefGoogle Scholar
  16. Starykov, O., Prokeš, J., Křivka, I., & Stejskal, J. (2004). Charge transport in polyaniline doped with 3-nitro-1,2,4-triazol-5(4H)-one. Macromolecular Symposia, 212, 455–460. DOI:10.1002/masy.200450857.CrossRefGoogle Scholar
  17. Stejskal, J. (2005). The effect of chemical heterogeneity on the properties of statistical copolymers: the conductivity of poly(aniline-co-2-bromoaniline). Polymer International, 54, 108–113. DOI: 10.1002/pt.1650.CrossRefGoogle Scholar
  18. Stejskal, J., Trchová, M., Ananieva, I. A., Janča, J., Prokeš, J., Fedorova, S., & Sapurina, I. (2004). Poly(aniline-co-pyrrole): powders, films, and colloids. Thermophoretic mobility of colloidal particles. Synthetic Metals, 146, 29–36. DOI:10.1016/j.synthmet.2004.06.013.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2013

Authors and Affiliations

  • Robert Moucka
    • 1
    • 2
    Email author
  • Miroslav Mrlik
    • 1
    • 2
  • Marketa Ilcikova
    • 3
  • Zdenko Spitalsky
    • 4
  • Natalia Kazantseva
    • 1
    • 2
  • Patrycja Bober
    • 5
  • Jaroslav Stejskal
    • 5
  1. 1.Centre for Polymer Systems, University InstituteTomáš Baťa University in ZlínZlínCzech Republic
  2. 2.Polymer Centre, Faculty of TechnologyTomáš Baťa University in ZlínZlínCzech Republic
  3. 3.Centre of Excellence SAS for Functionalized Multiphase Materials (FUN-MAT), Polymer InstituteSlovak Academy of SciencesBratislavaSlovakia
  4. 4.Polymer InstituteSlovak Academy of SciencesBratislavaSlovakia
  5. 5.Institute of Macromolecular ChemistryAcademy of Sciences of the Czech RepublicPrague 6Czech Republic

Personalised recommendations