Skip to main content

Advertisement

Log in

Solubility and micronisation of phenacetin in supercritical carbon dioxide

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The rapid expansion of a supercritical solution (RESS) process represents an attractive prospect for producing sub-micron and nano-particles of medical compounds with low solubility. The solubility of phenacetin in supercritical carbon dioxide was measured by the analytical-isothermal method at pressures ranging from 9.0 MPa to 30.0 MPa and temperatures ranging from 308.0 K to 328.0 K. The results show that the mole fraction solubility of phenacetin in supercritical carbon dioxide is up to 10−5. Four density-based semi-empirical models were introduced to correlate the experimental data. Agreement between the model predictions and experimental data is greater with the Adachi-Lu-modified Chrastil model than with the Chrastil model, Méndez-Santiago-Teja model, and the Bartle model and the average absolute relative deviation (AARD) observed is 0.0483. The preparation of fine phenacetin particles by the RESS process under different conditions of extraction temperatures (308.0–328.0 K), extraction pressures (9.0–30.0 MPa), nozzle temperatures (373.0–393.0 K), nozzle diameters (0.1–0.8 mm), and collection distance (20.0–40.0 mm) was investigated. The size and morphology of the resultant particles were analysed by SEM. A remarkable modification in size and morphology can be obtained by condition-optimisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Atila, C., Yıldız, N., & Çalımlı, A. (2010). Particle size design of digitoxin in supercritical fluids. The Journal of Supercritical Fluids, 51, 404–411. DOI: 10.1016/j.supflu.2009.10.006.

    Article  CAS  Google Scholar 

  • Bai, Y., Yang, H. J., Quan, C., & Guo, C. Y. (2007). Solubilities of 2,2′-bipyridine and 4,4′-dimethyl-2,2′-bipyridine in supercritical carbon dioxide. Journal of Chemical & Engineering Data, 52, 2074–2076. DOI: 10.1021/je700269m.

    Article  CAS  Google Scholar 

  • Bartle, K. D., Clifford, A. A., Jafar, S. A., & Shilstone, G. F. (1991). Solubilities of solids and liquids of low volatility in supercritical carbon dioxide. Journal of Physical and Chemical Reference Data, 20, 713–756. DOI: 10.1063/1.555893.

    Article  CAS  Google Scholar 

  • Chrastil, J. (1982). Solubility of solids and liquids in supercritical gases. Journal of Physical Chemistry, 86, 3016–3021. DOI: 10.1021/j100212a041.

    Article  CAS  Google Scholar 

  • Cocero, M. J., Martín, Á., Mattea, F., & Varona, S. (2009). Encapsulation and co-precipitation process with supercritical fluids: Fundamentals and applications. The Journal of Supercritical Fluids, 47, 546–555. DOI: 10.1016/j.supflu.2008.08.015.

    Article  CAS  Google Scholar 

  • Debenedetti, P. G. (1990). Homogeneous nucleation in supercritical fluids, AIChE Journal, 36, 1289–1298. DOI: 10.1002/aic.690360902.

    Article  CAS  Google Scholar 

  • de Lucas, A., Gracia, I., Rincón, J., & García, M. T. (2007). Solubility determination and model prediction of olive husk oil in supercritical carbon dioxide and cosolvents. Industrial & Engineering Chemistry Research, 46, 5061–5066. DOI: 10.1021/ie061153j.

    Article  Google Scholar 

  • Dohrn, R., Peper, S., & Fonseca, J. M. S. (2010). High-pressure fluid-phase equilibria: Experimental methods and systems investigated (2000–2004). Fluid Phase Equilibria, 288, 1–54. DOI: 10.1016/j.fluid.2009.08.008.

    Article  CAS  Google Scholar 

  • Dohrn, R., Fonseca, J. M. S., & Peper, S. (2012). Experimental methods for phase equilibria at high pressures. Annual Review of Chemical and Biomolecular Engineering, 3, 343–367. DOI: 10.1146/annurev-chembioeng-062011-081008.

    Article  CAS  Google Scholar 

  • Fages, J., Lochard, H., Letourneau, J. J., Sauceau, M., & Rodier, E. (2004). Particle generation for pharmaceutical applications using supercritical fluid technology. Powder Technology, 141, 219–226. DOI: 10.1016/j.powtec.2004.02.007.

    Article  CAS  Google Scholar 

  • Güclü-Üstündağ, Ö., & Temelli, F. (2006). Solubility behavior of ternary systems of lipids in supercritical carbon dioxide. Journal of Supercritical Fluids, 38, 275–288. DOI: 10.1016/j.supflu.2005.12.009.

    Article  Google Scholar 

  • Helfgen, B., Türk, M., & Schaber, K. (2000). Theoretical and experimental investigations of the micronization of organic solids by rapid expansion of supercritical solutions. Powder Technology, 110, 22–28. DOI: 10.1016/s0032-5910(99)00264-8.

    Article  CAS  Google Scholar 

  • Hezave, A. Z., & Esmaeilzadeh, F. (2010). Investigation of the rapid expansion of supercritical solution parameters effects on size and morphology of cephalexin particles. Journal of Aerosol Science, 41, 1090–1102. DOI: 10.1016/j.jaerosci.2010.08.004.

    Article  CAS  Google Scholar 

  • Higashi, H., Iwai, Y., & Arai, Y. (2001). Solubilities and diffusion coeffcients of high boiling compounds in supercritical carbon dioxide. Chemical Engineering Science, 56, 3027–3044. DOI: 10.1016/s0009-2509 (01)00003-3.

    Article  CAS  Google Scholar 

  • Huang, Z., Sun, G. B., Chiew, Y. C., & Kawi, S. (2005). Formation of ultrafine aspirin particles through rapid expansion of supercritical solutions (RESS). Powder Technology, 160, 127–134. DOI: 10.1016/j.powtec.2005.08.024.

    Article  CAS  Google Scholar 

  • Ikushima, Y., Saito, N., Arai, M., & Arai, K. (1991). Solvent polarity parameters of supercritical carbon dioxide as measured by infrared spectroscopy. Bulletin of the Chemical Society of Japan, 64, 2224–2229. DOI: 10.1246/bcsj.64.2224.

    Article  CAS  Google Scholar 

  • Jiang, C. Y., Pan, Q. M., & Pan, Z. R. (2002). Solubility of styrene in supercritical cabon dioxide. Journal of Chemical Industry and Engineering (China), 53, 723–728.

    CAS  Google Scholar 

  • Jung, J., & Perrut, M. (2001). Paticle design using supercritical fluids: Literature and patent survey. Journal of Supercritical Fluids, 20, 179–219. DOI: 10.1016/s0896-8446(01)00064-x.

    Article  CAS  Google Scholar 

  • Kawakami, K. (2012). Modification of physicochemical characteristics of active pharmaceutical ingredients and application of supersaturatable dosage forms for improving bioavailability of poorly absorbed drugs. Advanced Drug Delivery Reviews, 64, 480–495. DOI: 10.1016/j.addr.2011.10.009.

    Article  CAS  Google Scholar 

  • Kawashima, Y. (2001). Nanoparticulate systems for improved drug delivery. Advanced Drug Delivery Reviews, 47, 1–2. DOI: 10.1016/s0169-409x(00)00117-4.

    Article  CAS  Google Scholar 

  • Li, J. L., Jin, J. S., Zhang, Z. T., & Pei, X. M. (2009). Solubility of p-toluenesulfonamide in pure and modified supercritical carbon dioxide. Journal of Chemical & Engineering Data, 54, 1142–1146. DOI: 10.1021/je8008842.

    Article  CAS  Google Scholar 

  • Lucien, F. P., & Foster, N. R. (2000). Solubilities of solid mixtures in supercritical carbon dioxide: a review. The Journal of Supercritical Fluids, 17, 111–134. DOI: 10.1016/s0896-8446(99)00048-0.

    Article  CAS  Google Scholar 

  • McHugh, M., & Paulaitis, M. E. (1980). Solid solubilities of naphthalene and biphenyl in supercritical carbon dioxide. Journal of Chemical & Engineering Data, 25, 326–329. DOI: 10.1021/je60087a018.

    Article  CAS  Google Scholar 

  • Méndez-Santiago, J., & Teja, A. S. (1999). The solubility of solids in supercritical fluids. Fluid Phase Equilibria, 158–160, 501–510. DOI: 10.1016/s0378-3812(99)00154-5.

    Article  Google Scholar 

  • Palakodaty, S., & York, P. (1999). Phase behavioral effects on particle formation processes using supercritical fluids. Pharmaceutical Research, 16, 976–985. DOI: 10.1023/a:1011957512347.

    Article  CAS  Google Scholar 

  • Peng, D. Y., & Robinson, D. B. (1976). A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15, 59–64. DOI: 10.1021/i160057a011.

    Article  CAS  Google Scholar 

  • Rajasekhar, Ch., Chandrasekhar, G., & Giridhar, M. (2010). Solubility of n-(4-ethoxyphenyl)ethanamide in supercritical carbon dioxide. Journal of Chemical & Engineering Data, 55, 1437–1440. DOI: 10.1021/je900614f.

    Article  Google Scholar 

  • Salinas-Hernández, R., Ruiz-Treviño, F. A., Ortiz-Estrada, C. H., Luna-Bárcenas, G., Prokhorov, Y., Alvarado, J. F. J., & Sanchez, I. C. (2009). Chitin microstructure formation by rapid expansion techniques with supercritical carbon dioxide. Industrial & Engineering Chemistry Research, 48, 769–778. DOI: 10.1021/ie800084x.

    Article  Google Scholar 

  • Sauceau, M., Fages, J., Letourneau, J. J., & Richon, D. (2000). A novel apparatus for accurate measurements of solid solubilities in supercritical phases. Industrial & Engineering Chemistry Research, 39, 4609–4614. DOI: 10.1021/ie000181d.

    Article  CAS  Google Scholar 

  • Škerget, M., Knez, Ž., & Knez-Hrnčič, M. (2011). Solubility of solids in sub- and supercritical fluids: a review. Journal of Chemical & Engineering Data, 56, 694–719. DOI: 10.1021/je1011373.

    Article  Google Scholar 

  • Tong, H. H. Y., Shekunov, B. Yu., York, P., & Chow, A. H. L. (2002). Influence of polymorphism on the surface energetics of salmeterol xinafoate crystallized from supercritical fluids. Pharmaceutical Research, 19, 640–648. DOI: 10.1023/a:1015358129817.

    Article  CAS  Google Scholar 

  • Wang, J. D., Chen, J. Z., & Yang, Y. R. (2005). Micronization of titanocene dichloride by rapid expansion of supercritical solution and its ethylene polymerization, The Journal of Supercritical Fluids, 33, 159–172. DOI: 10.1016/j.supflu.2004.05.006.

    Article  CAS  Google Scholar 

  • Yasuji, T., Kondo, H., & Sako, K. (2012). The effect of food on the oral bioavailability of drugs: a review of current developments and pharmaceutical technologies for pharmacokinetic control. Therapeutic Delivery, 3, 81–90. DOI: 10.4155/tde.11.142.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Bing Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Yi, JM., Liu, YJ. et al. Solubility and micronisation of phenacetin in supercritical carbon dioxide. Chem. Pap. 67, 517–525 (2013). https://doi.org/10.2478/s11696-013-0328-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0328-6

Keywords

Navigation