Advertisement

Chemical Papers

, Volume 67, Issue 5, pp 517–525 | Cite as

Solubility and micronisation of phenacetin in supercritical carbon dioxide

  • Xing Wu
  • Jian-Min Yi
  • Yue-Jin Liu
  • Yong-Bing LiuEmail author
  • Pan-Liang Zhang
Original Paper

Abstract

The rapid expansion of a supercritical solution (RESS) process represents an attractive prospect for producing sub-micron and nano-particles of medical compounds with low solubility. The solubility of phenacetin in supercritical carbon dioxide was measured by the analytical-isothermal method at pressures ranging from 9.0 MPa to 30.0 MPa and temperatures ranging from 308.0 K to 328.0 K. The results show that the mole fraction solubility of phenacetin in supercritical carbon dioxide is up to 10−5. Four density-based semi-empirical models were introduced to correlate the experimental data. Agreement between the model predictions and experimental data is greater with the Adachi-Lu-modified Chrastil model than with the Chrastil model, Méndez-Santiago-Teja model, and the Bartle model and the average absolute relative deviation (AARD) observed is 0.0483. The preparation of fine phenacetin particles by the RESS process under different conditions of extraction temperatures (308.0–328.0 K), extraction pressures (9.0–30.0 MPa), nozzle temperatures (373.0–393.0 K), nozzle diameters (0.1–0.8 mm), and collection distance (20.0–40.0 mm) was investigated. The size and morphology of the resultant particles were analysed by SEM. A remarkable modification in size and morphology can be obtained by condition-optimisation.

Keywords

RESS micronisation phenacetin solubility solubility models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11696_2013_328_MOESM1_ESM.doc (5.1 mb)
Supplementary material, approximately 5.08 MB.

References

  1. Atila, C., Yıldız, N., & Çalımlı, A. (2010). Particle size design of digitoxin in supercritical fluids. The Journal of Supercritical Fluids, 51, 404–411. DOI: 10.1016/j.supflu.2009.10.006.CrossRefGoogle Scholar
  2. Bai, Y., Yang, H. J., Quan, C., & Guo, C. Y. (2007). Solubilities of 2,2′-bipyridine and 4,4′-dimethyl-2,2′-bipyridine in supercritical carbon dioxide. Journal of Chemical & Engineering Data, 52, 2074–2076. DOI: 10.1021/je700269m.CrossRefGoogle Scholar
  3. Bartle, K. D., Clifford, A. A., Jafar, S. A., & Shilstone, G. F. (1991). Solubilities of solids and liquids of low volatility in supercritical carbon dioxide. Journal of Physical and Chemical Reference Data, 20, 713–756. DOI: 10.1063/1.555893.CrossRefGoogle Scholar
  4. Chrastil, J. (1982). Solubility of solids and liquids in supercritical gases. Journal of Physical Chemistry, 86, 3016–3021. DOI: 10.1021/j100212a041.CrossRefGoogle Scholar
  5. Cocero, M. J., Martín, Á., Mattea, F., & Varona, S. (2009). Encapsulation and co-precipitation process with supercritical fluids: Fundamentals and applications. The Journal of Supercritical Fluids, 47, 546–555. DOI: 10.1016/j.supflu.2008.08.015.CrossRefGoogle Scholar
  6. Debenedetti, P. G. (1990). Homogeneous nucleation in supercritical fluids, AIChE Journal, 36, 1289–1298. DOI: 10.1002/aic.690360902.CrossRefGoogle Scholar
  7. de Lucas, A., Gracia, I., Rincón, J., & García, M. T. (2007). Solubility determination and model prediction of olive husk oil in supercritical carbon dioxide and cosolvents. Industrial & Engineering Chemistry Research, 46, 5061–5066. DOI: 10.1021/ie061153j.CrossRefGoogle Scholar
  8. Dohrn, R., Peper, S., & Fonseca, J. M. S. (2010). High-pressure fluid-phase equilibria: Experimental methods and systems investigated (2000–2004). Fluid Phase Equilibria, 288, 1–54. DOI: 10.1016/j.fluid.2009.08.008.CrossRefGoogle Scholar
  9. Dohrn, R., Fonseca, J. M. S., & Peper, S. (2012). Experimental methods for phase equilibria at high pressures. Annual Review of Chemical and Biomolecular Engineering, 3, 343–367. DOI: 10.1146/annurev-chembioeng-062011-081008.CrossRefGoogle Scholar
  10. Fages, J., Lochard, H., Letourneau, J. J., Sauceau, M., & Rodier, E. (2004). Particle generation for pharmaceutical applications using supercritical fluid technology. Powder Technology, 141, 219–226. DOI: 10.1016/j.powtec.2004.02.007.CrossRefGoogle Scholar
  11. Güclü-Üstündağ, Ö., & Temelli, F. (2006). Solubility behavior of ternary systems of lipids in supercritical carbon dioxide. Journal of Supercritical Fluids, 38, 275–288. DOI: 10.1016/j.supflu.2005.12.009.CrossRefGoogle Scholar
  12. Helfgen, B., Türk, M., & Schaber, K. (2000). Theoretical and experimental investigations of the micronization of organic solids by rapid expansion of supercritical solutions. Powder Technology, 110, 22–28. DOI: 10.1016/s0032-5910(99)00264-8.CrossRefGoogle Scholar
  13. Hezave, A. Z., & Esmaeilzadeh, F. (2010). Investigation of the rapid expansion of supercritical solution parameters effects on size and morphology of cephalexin particles. Journal of Aerosol Science, 41, 1090–1102. DOI: 10.1016/j.jaerosci.2010.08.004.CrossRefGoogle Scholar
  14. Higashi, H., Iwai, Y., & Arai, Y. (2001). Solubilities and diffusion coeffcients of high boiling compounds in supercritical carbon dioxide. Chemical Engineering Science, 56, 3027–3044. DOI: 10.1016/s0009-2509 (01)00003-3.CrossRefGoogle Scholar
  15. Huang, Z., Sun, G. B., Chiew, Y. C., & Kawi, S. (2005). Formation of ultrafine aspirin particles through rapid expansion of supercritical solutions (RESS). Powder Technology, 160, 127–134. DOI: 10.1016/j.powtec.2005.08.024.CrossRefGoogle Scholar
  16. Ikushima, Y., Saito, N., Arai, M., & Arai, K. (1991). Solvent polarity parameters of supercritical carbon dioxide as measured by infrared spectroscopy. Bulletin of the Chemical Society of Japan, 64, 2224–2229. DOI: 10.1246/bcsj.64.2224.CrossRefGoogle Scholar
  17. Jiang, C. Y., Pan, Q. M., & Pan, Z. R. (2002). Solubility of styrene in supercritical cabon dioxide. Journal of Chemical Industry and Engineering (China), 53, 723–728.Google Scholar
  18. Jung, J., & Perrut, M. (2001). Paticle design using supercritical fluids: Literature and patent survey. Journal of Supercritical Fluids, 20, 179–219. DOI: 10.1016/s0896-8446(01)00064-x.CrossRefGoogle Scholar
  19. Kawakami, K. (2012). Modification of physicochemical characteristics of active pharmaceutical ingredients and application of supersaturatable dosage forms for improving bioavailability of poorly absorbed drugs. Advanced Drug Delivery Reviews, 64, 480–495. DOI: 10.1016/j.addr.2011.10.009.CrossRefGoogle Scholar
  20. Kawashima, Y. (2001). Nanoparticulate systems for improved drug delivery. Advanced Drug Delivery Reviews, 47, 1–2. DOI: 10.1016/s0169-409x(00)00117-4.CrossRefGoogle Scholar
  21. Li, J. L., Jin, J. S., Zhang, Z. T., & Pei, X. M. (2009). Solubility of p-toluenesulfonamide in pure and modified supercritical carbon dioxide. Journal of Chemical & Engineering Data, 54, 1142–1146. DOI: 10.1021/je8008842.CrossRefGoogle Scholar
  22. Lucien, F. P., & Foster, N. R. (2000). Solubilities of solid mixtures in supercritical carbon dioxide: a review. The Journal of Supercritical Fluids, 17, 111–134. DOI: 10.1016/s0896-8446(99)00048-0.CrossRefGoogle Scholar
  23. McHugh, M., & Paulaitis, M. E. (1980). Solid solubilities of naphthalene and biphenyl in supercritical carbon dioxide. Journal of Chemical & Engineering Data, 25, 326–329. DOI: 10.1021/je60087a018.CrossRefGoogle Scholar
  24. Méndez-Santiago, J., & Teja, A. S. (1999). The solubility of solids in supercritical fluids. Fluid Phase Equilibria, 158–160, 501–510. DOI: 10.1016/s0378-3812(99)00154-5.CrossRefGoogle Scholar
  25. Palakodaty, S., & York, P. (1999). Phase behavioral effects on particle formation processes using supercritical fluids. Pharmaceutical Research, 16, 976–985. DOI: 10.1023/a:1011957512347.CrossRefGoogle Scholar
  26. Peng, D. Y., & Robinson, D. B. (1976). A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15, 59–64. DOI: 10.1021/i160057a011.CrossRefGoogle Scholar
  27. Rajasekhar, Ch., Chandrasekhar, G., & Giridhar, M. (2010). Solubility of n-(4-ethoxyphenyl)ethanamide in supercritical carbon dioxide. Journal of Chemical & Engineering Data, 55, 1437–1440. DOI: 10.1021/je900614f.CrossRefGoogle Scholar
  28. Salinas-Hernández, R., Ruiz-Treviño, F. A., Ortiz-Estrada, C. H., Luna-Bárcenas, G., Prokhorov, Y., Alvarado, J. F. J., & Sanchez, I. C. (2009). Chitin microstructure formation by rapid expansion techniques with supercritical carbon dioxide. Industrial & Engineering Chemistry Research, 48, 769–778. DOI: 10.1021/ie800084x.CrossRefGoogle Scholar
  29. Sauceau, M., Fages, J., Letourneau, J. J., & Richon, D. (2000). A novel apparatus for accurate measurements of solid solubilities in supercritical phases. Industrial & Engineering Chemistry Research, 39, 4609–4614. DOI: 10.1021/ie000181d.CrossRefGoogle Scholar
  30. Škerget, M., Knez, Ž., & Knez-Hrnčič, M. (2011). Solubility of solids in sub- and supercritical fluids: a review. Journal of Chemical & Engineering Data, 56, 694–719. DOI: 10.1021/je1011373.CrossRefGoogle Scholar
  31. Tong, H. H. Y., Shekunov, B. Yu., York, P., & Chow, A. H. L. (2002). Influence of polymorphism on the surface energetics of salmeterol xinafoate crystallized from supercritical fluids. Pharmaceutical Research, 19, 640–648. DOI: 10.1023/a:1015358129817.CrossRefGoogle Scholar
  32. Wang, J. D., Chen, J. Z., & Yang, Y. R. (2005). Micronization of titanocene dichloride by rapid expansion of supercritical solution and its ethylene polymerization, The Journal of Supercritical Fluids, 33, 159–172. DOI: 10.1016/j.supflu.2004.05.006.CrossRefGoogle Scholar
  33. Yasuji, T., Kondo, H., & Sako, K. (2012). The effect of food on the oral bioavailability of drugs: a review of current developments and pharmaceutical technologies for pharmacokinetic control. Therapeutic Delivery, 3, 81–90. DOI: 10.4155/tde.11.142.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2013

Authors and Affiliations

  • Xing Wu
    • 1
  • Jian-Min Yi
    • 1
  • Yue-Jin Liu
    • 2
  • Yong-Bing Liu
    • 1
    Email author
  • Pan-Liang Zhang
    • 1
  1. 1.Department of Chemical EngineeringHunan Institute of Science and TechnologyYueyangHunan, China
  2. 2.Department of Chemical EngineeringXiang Tan UniversityXiangtanHunan, China

Personalised recommendations