Advertisement

Chemical Papers

, Volume 67, Issue 9, pp 1210–1217 | Cite as

Preparation of aluminium ammonium calcium phosphates using microwave radiation

  • Kinga ŁuczkaEmail author
  • Daniel Sibera
  • Aleksandra Smorowska
  • Barbara Grzmil
Original Paper

Abstract

Microwave radiation was used in the acquisition of aluminium ammonium calcium phosphates. The substrates such as CaCO3, H3PO4, aqueous ammonia were reagent grade, whereas Al(OH)3 was prepared afresh. The influence of process parameters (pH 6 ± 2, molar ratios of Al3+: Ca2+: PO 4 3− in the substrates, respectively 0.31: 0.62: 1; 0.5: 0.5: 1; 0.72: 0.36: 1) on the phase composition and the product properties was determined. Statistical software STATISTICA 10 was used for planning and evaluation of the experiments. The process parameters making it possible to acquire the material with the anticipated physicochemical properties were determined based on statistical evaluation of the planned research by the plan fractional factorial design at three levels 3(k−p). The phase composition of the samples was studied using XRD analysis. The specific surface area was calculated using the BET method and the particle size was determined by LSM. Materials with a molar ratio of Al3+: Ca2+ and Al3+: NH 4 + in the range of 0.07–0.76 and 0.75–3.4, respectively, with an absorption oil number of 36–56 g per 100 g, S BET within 8.2–73 m2 g−1, and particle size in the range of 156–252 nm were obtained.

Keywords

microwave radiation anti-corrosive pigments aluminium ammonium calcium phosphates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amirudin, A., Barreau, C., Hellouin, R., & Thierry, D. (1995). Evaluation of anti-corrosive pigments by pigment extract studies, atmospheric exposure and electrochemical impedance spectroscopy. Progress in Organic Coatings, 25, 339–355. DOI: 10.1016/0300-9440(94)00546-d.CrossRefGoogle Scholar
  2. Beppu, M. M., de Oliveira Lima, E. C., & Galembeck, F. (1996). Aluminum phosphate particles containing closed pores: Preparation, characterization, and use as a white pigment. Journal of Colloid and Interface Science, 178, 93–103. DOI: 10.1006/jcis.1996.0097.CrossRefGoogle Scholar
  3. Box, G. E. P., Hunter, J. S., & Hunter, W. G. (2005). Statistics for experimenters: Design, innovation, and discovery. Hoboken, NJ, USA: Wiley-Interscience.Google Scholar
  4. Burrell, L. S., Johnston, C. T., Schulze, D., Klein, J., White, J. L., & Hem, S. L. (2000). Aluminium phosphate adjuvants prepared by precipitation at constant pH. Part II: physicochemical properties. Vaccine, 19, 282–287. DOI: 10.1016/s0264-410x(00)00162-6.CrossRefGoogle Scholar
  5. Chico, B., Simancas, J., Vega, J. M., Granizo, N., Díaz, I., de la Fuente, D., & Morcillo, M. (2008). Anticorrosive behaviour of alkyd paints formulated with ion-exchange pigments. Progress in Organic Coatings, 61, 283–290. DOI: 10.1016/j.porgcoat.2007.07.033.CrossRefGoogle Scholar
  6. Ciba, J. (1998). Poradnik chemika analityka. Warszawa, Poland: WNT. (in Polish)Google Scholar
  7. Deyá, C., Blustein, G., del Amo, B., & Romagnoli, R. (2010). Evaluation of eco-friendly anticorrosive pigments for paints in service conditions. Progress in Organic Coatings, 69, 1–6. DOI: 10.1016/j.porgcoat.2010.03.011.CrossRefGoogle Scholar
  8. Głuszko, M. (2008). Problems of anticorrosion protection of steel structures and electro energetic equipment exploited in atmospheric conditions. Prace Instytutu Elektrotechniki, 235, 1–173. (in Polish)Google Scholar
  9. House, W. A. (1999). The physico-chemical conditions for the precipitation of phosphate with calcium. Environmental Technology, 20, 727–733. DOI: 10.1080/09593332008616867.CrossRefGoogle Scholar
  10. Kic, B., Grzmil, B., & Lubkowski, K. (2009). Otrzymywanie nanokrystalicznego fosforanu glinu jako antykorozyjnego pigmentu. Przemysł Chemiczny, 88, 468–471. (in Polish)Google Scholar
  11. Lagno, F., & Demopoulos, G. P. (2005). Synthesis of hydrated aluminum phosphate, AlPO4·1.5H2O (AlPO4-H3), by controlled reactive crystallization in sulfate media. Industrial & Engineering Chemistry Research, 44, 8033–8038. DOI: 10.1021/ie0505559.CrossRefGoogle Scholar
  12. Liu, G., Jia, M., Zhou, Z., Wang, L., Zhang, W., & Jiang, D. (2006). Synthesis and pore formation study of amorphous mesoporous aluminophosphates in the presence of citric acid. Journal of Colloid and Interface Science, 302, 278–286. DOI: 10.1016/j.jcis.2006.06.026.CrossRefGoogle Scholar
  13. Mastuda, T., Ogawa, O., & Taki, T. (2010). US Patent No. 7,828,884. Washington, D.C.: U.S. Patent and Trademark Office.Google Scholar
  14. Minczewski, J., & Marczenko, Z. (2005). Chemia analityczna. Warszawa, Poland: PWN. (in Polish)Google Scholar
  15. Mošner, P., Kalendová, A., & Koudelka, L. (2000). Anticorrosion properties of SrO-ZnO-B2O3-P2O5 pigments. Dyes and Pigments, 45, 29–34. DOI: 10.1016/s0143-7208(00)00007-3.CrossRefGoogle Scholar
  16. Müller, G., Bódis, I., Eder-Mirth, G., Kornatowski, J., & Lercher, J. A. (1997). In situ FT-IR microscopic investigation of metal substituted AlPO4-5 single crystals. Journal of Molecular Structure, 410–411, 173–178. DOI: 10.1016/s0022-2860(96)09578-6.CrossRefGoogle Scholar
  17. Nakano, J., Murakami, M., & Okuda, M. (1987). Aluminium triphosphate-salt spray studies. Polymers Paint Colour Journal, 177, 642–645.Google Scholar
  18. Park, J. H., Lee, G. D., Nishikata, A., & Tsuru, T. (2002). Anticorrosive behavior of hydroxyapatite as an environmentally friendly pigment. Corrosion Science, 44, 1087–1095. DOI: 10.1016/s0010-938x(01)00118-4.CrossRefGoogle Scholar
  19. Polish Committee for Standardization (1999). General methods of test for pigments and extenders — Part 5: Determination of oil absorption value. PN EN ISO 787-5:1995. Warsaw, Poland.Google Scholar
  20. Rinella, J. V., White, J. L., & Hem, S. L. (1995). Effect of anions on model aluminum-adjuvant-containing vaccines. Journal of Colloid and Interface Science, 172, 121–130. DOI: 10.1006/jcis.1995.1233.CrossRefGoogle Scholar
  21. Rosseto, R., dos Santos, á. C. M. A., & Galembeck, F. (2006). Hydrous non-crystalline phosphates: structure, function and a new white pigment. Journal of the Brazilian Chemical Society, 17, 1465–1472. DOI: 10.1590/s0103-50532006000800002.CrossRefGoogle Scholar
  22. Sastri, V. S. (2011). Green corrosion inhibitors: Theory and practice. Hoboken, NJ, USA: Wiley.CrossRefGoogle Scholar
  23. Socrates, G. (1980). Infrared characteristic group frequencies. Uxbridge, UK: Wiley.Google Scholar
  24. Takahashi, M. (1984). Characteristic and applications of aluminium triphosphate as special cheemical. Polymers Paint Colour Journal, 174, 281–284.Google Scholar
  25. Valente Nabais, J. M., Carrott, P. J. M., Ribeiro Carrott, M. M. L., & Menéndez, J. A. (2004). Preparation and modification of activated carbon fibres by microwave heating. Carbon, 42, 1315–1320. DOI: 10.1016/j.carbon.2004.01.033.CrossRefGoogle Scholar
  26. Valsami-Jones, E. (2001). Calcium phosphate precipitation. Scope Newsletter, 41, 8–15.Google Scholar
  27. Van Wazer, J. R. (1958). Phosphorus and its compounds. New York, NY, USA: Interscience Publishers.Google Scholar
  28. Wallton, A. G., Boclin, W. J., Furedi, H., & Schwartz, A. (1967). Nucleation of calcium phosphate from solution. Canadian Journal of Chemistry, 45, 2695–2701. DOI: 10.1139/v67-439.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2013

Authors and Affiliations

  • Kinga Łuczka
    • 1
    Email author
  • Daniel Sibera
    • 1
  • Aleksandra Smorowska
    • 1
  • Barbara Grzmil
    • 1
  1. 1.Institute of Chemical and Environment EngineeringWest Pomeranian University of Technology, SzczecinSzczecinPoland

Personalised recommendations