Zeolite and potting soil sorption of CO2 and NH3 evolved during co-composting of grape and tobacco waste

Abstract

The gaseous byproducts produced during the composting of different kinds of solid waste are carbon dioxide (CO2) and ammonia (NH3). CO2 is a greenhouse gas and NH3 is a toxic and corrosive air pollutant so, they must be removed from exhaust gases prior to release into the atmosphere. The purpose of this work was to investigate the sorption of CO2 and NH3, evolved during composting, on zeolite and potting soil. The composting of the mixture of grape waste (GW) and tobacco waste (TW) in the mass ratio GW: TW = 55: 45 (dry mass basis) was carried out under forced aeration (0.645 L min−1 kg−1) in a column reactor (10 L) under adiabatic conditions over 21 days. Adsorption of the gases evolved was carried out in the fixed-bed column reactor (0.166 L). The most important physical-chemical characteristics of the composting mass and adsorbents and the evolved CO2 and NH3 were closely monitored. The highest CO2 and NH3 concentrations were measured at the thermophilic stage and the cooling stage of composting, respectively. The results showed that zeolite and potting soil were good adsorbents for the sorption of CO2 and NH3. The zeolite adsorbed 31 % of the evolved CO2 and the entire concentration of ammonia, whilst the potting soil adsorbed 3 % of CO2 and 49 % of NH3 from the exhaust gases.

This is a preview of subscription content, access via your institution.

References

  1. APHA (1985). Standard methods for the examination of water and wastewater (16th ed.). Washington, DC, USA: American Public Health Association.

    Google Scholar 

  2. Austrian Standards Institute (1986). Austrian standard: Analytical methods and quality control for waste compost. Ö NORM S 2023, Vienna, Austria.

    Google Scholar 

  3. Baquerizo, G., Maestre, J. P., Sakuma, T., Deshusses, M. A., Gamisans, X., Gabriel, D., & Lafuente, J. (2005). A detailed model of a bio?lter for ammonia removal: Model parameters analysis and model validation. Chemical Engineering Journal, 113, 205–214. DOI: 10.1016/j.cej.2005.03.003.

    Article  CAS  Google Scholar 

  4. Bautista, J. M., Kim, H. S., Ahn, D. H., Zhang, R. H., & Oh, Y. S. (2011). Changes in physicochemical properties and gaseous emissions of composting swine manure amended with alum and zeolite. Korean Journal of Chemical Engineering, 28, 189–194. DOI: 10.1007/s11814-010-0312-6.

    Article  CAS  Google Scholar 

  5. Bernai, M. P., Paredes, C., Sánchez-Monedero, M. A., & Cegarra, J., (1998). Maturity and stability parameters of composts prepared with a wide range of organic waste. Bioresource Technology, 63, 91–99. DOI: 10.1016/s0960-8524(97)00084-9.

    Article  Google Scholar 

  6. Bertran, E., Sort, X., Soliva M., & Trillas, I. (2004). Composting winery waste: sludges and grape stalks. Bioresource Technology, 95, 203–208. DOI: 10.1016/j.biortech.2003.07.012.

    Article  CAS  Google Scholar 

  7. Bonenfant, D., Kharoune, M., Niquette, P., Mimeault, M., & Hausler, R. (2008). Advances in principal factors influencing carbon dioxide adsorption on zeolite. Science and Technology of Advanced Materials, 9, 013007. DOI: 10.1088/1468-6996/9/1/013007.

    Article  Google Scholar 

  8. Briški, F., Gomzi, Z., Horgas, N., & Vuković, M. (2003). Aerobic composting of tobacco solid waste. Acta Chimica Slovenica, 50, 715–729.

    Google Scholar 

  9. Briški, F., Kopčić, N., Ćosić, I., Kučić, D., & Vuković, M. (2012). Biodegradation of tobacco waste by composting: Genetic identification of nicotine-degrading bacteria and kinetic analysis of transformations in leachate. Chemical Papers, 66, 1103–1110. DOI: 10.2478/s11696-012-0234-3.

    Article  Google Scholar 

  10. Choi, S., Drese, J. H., & Jones, C. W. (2009). Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem, 2, 796–854. DOI: 10.1002/cssc.200900036.

    Article  CAS  Google Scholar 

  11. de Guardia, A., Mallard, P., Teglia, C., Marin, A., Le Pape, C., Launay, M., Benoist, J. C., & Petiot, C. (2010). Comparison of five organic wastes regarding their behaviour during composting: Part 1, biodegradability, stabilization kinetics and temperature rise. Waste Management, 30, 402–414. DOI: 10.1016/j.wasman.2009.10.019.

    Article  Google Scholar 

  12. Deng, W. Y., Yan, J. H., Li, X. D., Wang, F., Zhu, X. W., Lu, S. Y., & Cen, K. F. (2009). Emission characteristics of volatile compounds during sludges drying process. Journal of Hazardous Materials, 162, 186–192. DOI: 10.1016/j.jhazmat.2008.05.022.

    Article  CAS  Google Scholar 

  13. Diaz, M. J., Madejón, E., López, F., López, R., & Cabrera, F. (2002). Optimization of the rate vinasse/grape marc for cocomposting process. Process Biochemistry, 37, 1143–1150. DOI: 10.1016/s0032-9592(01)00327-2.

    Article  CAS  Google Scholar 

  14. Farkaš, A., Rožić, M., & Barbarić-Mikočević, Ž. (2005). Ammonium exchange in leakage waters of waste dumps using natural zeolite from the Krapina region, Croatia. Journal of Hazardous Materials, 117, 25–33. DOI: 10.1016/j.jhazmat.2004.05.035.

    Article  Google Scholar 

  15. Grigatti, M., Cavani, L., & Ciavatta, C. (2011). The evaluation of stability during the composting of different starting materials: Comparison of chemical and biological parameters. Chemosphere, 83, 41–48. DOI: 10.1016/j.chemosphere.2011. 01.010.

    Article  CAS  Google Scholar 

  16. Hao, X. Y., Chang, C., Janzen, H. H., Hill, B. R., & Ormann, T. (2005). Potential nitrogen enrichment of soil and surface water by atmospheric ammonia sorption in intensive livestock production areas. Agriculture, Ecosystems & Environment, 110, 185–194. DOI: 10.1016/j.agee.2005.04.002.

    Article  CAS  Google Scholar 

  17. Haug, R. T. (1993). The practical handbook of composting engineering (Chapter 9, pp. 326–327). Boca Raton, FL, USA: Lewis Publishers.

    Google Scholar 

  18. Heavey, M. (2003). Low-cost treatment of landfill leachate using peat. Waste Management, 23, 447–454. DOI: 10.1016/s0956-053x(03)00064-3.

    Article  CAS  Google Scholar 

  19. Hedström, A. (2001). Ion exchange of ammonium in zeolites: A literature review. Journal of Environmental Engineering, 127, 673–681. DOI: 10.1061/(ASCE)0733-9372(2001)127:8(673).

    Article  Google Scholar 

  20. Hu, T. J., Zeng, G. M., Huang, D. L., Yu, X. Y., Jiang, X. Y., Dai, F., & Huang, G. H. (2007). Use of potassium dihydrogen phosphate and sawdust as adsorbents of ammoniacal nitrogen in aerobic composting process. Journal of Hazardous Materials, 141, 736–744. DOI: 10.1016/j.jhazmat.2006.07.027.

    Article  CAS  Google Scholar 

  21. Inglezakis, V. J., & Poulopoulos, S. G. (2006). Adsorption, ion exchange and catalysis design of operations and environmental applications. Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  22. Kaithwas, A., Prasad, M., Kulshreshtha, A., & Verma, S. (2012). Industrial wastes derived solid adsorbents for CO2 capture: A mini review. Chemical Engineering Research and Design, 90, 1632–1641. DOI: 10.1016/j.cherd.2012.02.011.

    Article  CAS  Google Scholar 

  23. Kaosol, T., & Pongpat, N. (2011). Ammonia gas removal from gas stream by biofiltration using agricultural residue biofilter medias in laboratory-scale biofilter. World Academy of Science, Engineering and Technology, 2011(53), 642–646.

    Google Scholar 

  24. Kolthoff, I. M., & Sandel, E. B. (1951). Inorganic quantitative analysis (pp. 347–352). Zagreb, Croatia: Školska Knjiga. (in Croatian)

    Google Scholar 

  25. Kučić, D., Kopčić, I., Ćosić, I., Vuković, M., & Briški, F. (2011). Determination of ammonia and carbon dioxide in exhaust gases during composting of tobacco waste in closed reactor. In Proceedings of the 3 th International Symposium on Environmental Management — Towards Sustainable Technologies, October 26–28, 2011 (pp. 280–286). Zagreb, Croatia: University of Zagreb.

    Google Scholar 

  26. Kučić, D., Kopčić, N., Jurić, I., Ćosić, I., Vuković, M., & Briški, F. (2012). Sorption of ammonia and carbon dioxide evolved during composting of winery and tobacco waste in reactor system. In J. Markoš (Ed.), Proceedings of the 39th International Conference of Slovak Society of Chemical Engineering, May 21–25, 2012 (pp. 380–386). Tatranské Matliare, Slovakia: Slovak Society of Chemical Engineering.

    Google Scholar 

  27. Li, X., Lin, C., Wang, Y., Zhao, M., & Hou, Y. (2010). Clinoptilolite adsorption capability of ammonia in pig farm. Procedia Environmental Sciences, 2, 1598–1612. DOI: 10.1016/j.proenv.2010.10.171.

    Article  Google Scholar 

  28. Liang, Y., Leonard, J. J., Feddes, J. J. R., & McGill, W. B. (2006). Influence of carbon and buffer amendment on ammonia volatilization in composting. Bioresource Technology, 97, 748–761. DOI: 10.1016/j.biortech.2005.03.041.

    Article  CAS  Google Scholar 

  29. Nakasaki, K., Ohtaki, A., & Takano, H. (2000). Biodegradable plastic reduces ammonia emission during composting. Polymer Degradation and Stability, 70, 185–188. DOI: 10.1016/s0141-3910(00)00104-x.

    Article  CAS  Google Scholar 

  30. Pagans, E., Font, X., & Sánchez, A. (2007a). Coupling composting and biofiltration for ammonia and volatile organic compound removal. Biosystems Engineering, 97, 491–500. DOI: 10.1016/j.biosystemseng.2007.03.035.

    Article  Google Scholar 

  31. Pagans, E., Font, X., & Sánchez, A. (2007b). Adsorption, absorption, and biological degradation of ammonia in different biofilter organic media. Biotechnology and Bioengineering, 97, 515–525. DOI: 10.1002/bit.21246.

    Article  CAS  Google Scholar 

  32. Paillat, J. M., Robin, P., Hassouna, M., & Leterme, P. (2005). Predicting ammonia and carbon dioxide emissions from carbon and nitrogen biodegradability during animal waste composting. Atmospheric Environment, 39, 6833–6842. DOI: 10.1016/j.atmosenv.2005.07.045.

    Article  CAS  Google Scholar 

  33. Pérez Marín, A. B., Aguilar, M. I., Meseguer, V. F., Ortuño, J. F., Sáez, J., & Lloréns, M. (2009). Biosorption of chromium (III) by orange (Citrus cinenis) waste: Batch and continuous studies. Chemical Engineering Journal, 155, 199–206. DOI: 10.1016/j.cej.2009.07.034.

    Article  Google Scholar 

  34. Prescott, L. M., Harley, J. P., & Klein, D. A. (1996). Microbiology (3rd ed., pp. 498–502). Chichester, UK: WCB Publishers.

    Google Scholar 

  35. Rodrigues, C. C., de Moraes, D., Jr., Nóbrega, S. W., & Barboza, M. G. (2007). Ammonia adsorption on fixed bed of activated carbon. Bioresource Technology, 98, 886–891. DOI: 10.1016/j.biortech.2006.03.024.

    Article  CAS  Google Scholar 

  36. Rufford, T. E., Smart, S., Watson, G. C. Y., Graham, B. F., Boxall, J., Diniz da Costa, J. C., & May, E. F. (2012). The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies. Journal of Petroleum Science and Engineering, 94–95, 127–154.

    Google Scholar 

  37. Saithep, N., Dheeranupatana, S., Sumrit, P., Jeerat, S., Boonchalermkit, S., Wongsanoon, J., & Jatisatienr, C. (2009). Composting of tobacco plant waste by manual turning and forced aeration system. Maejo International Journal of Science and Technology, 3, 248–260.

    CAS  Google Scholar 

  38. Šály, V., & Kočálka, S. (1996). Dieletric response of natural clinoptilolite type zeolitic material containing silver iodide. Chemical Papers, 50, 328–333.

    Google Scholar 

  39. Sánchez-Monedero, M. A., Roig, A., Paredes, C., & Bernal, M. P. (2001). Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures. Bioresource Technology, 78, 301–308. DOI: 10.1016/s0960-8524(01)00031-1.

    Article  Google Scholar 

  40. Sánchez-Monedero, M. A., Serramiá, N., García-Ortiz Civanto, C., Fernández-Hernández, A., & Roig, A. (2010). Greenhouse gas emissions during composting of two-phase olive mill wastes with different agroindustrial by-products. Chemosphere, 81, 18–25. DOI: 10.1016/j.chemosphere.2010.07.022.

    Article  Google Scholar 

  41. Smet, E., van Langenhove, H., & Maes, K. (2000). Abatement of high concentrated ammonia loaded waste gases in compost biofilters. Water, Air, & Soil Pollution, 119, 177–190. DOI: 10.1023/a:1005186327201.

    Article  CAS  Google Scholar 

  42. Tiquia, S. M., & Tam, N. F. Y. (2000). Fate of nitrogen during composting of chicken litter. Environmental Pollution, 110, 535–541. DOI: 10.1016/s0269-7491(99)00319-x.

    Article  CAS  Google Scholar 

  43. Venglovsky, J., Sasakova, N., Vargova, M., Pacajova, Z., Placha, I., Petrovsky, M., & Harichova, D. (2005). Evolution of temperature and chemical parameters during composting of the pig slurry solid fraction amended with natural zeolite. Bioresource Technology, 96, 181–189. DOI: 10.1016/j.biortech.2004.05.006.

    Article  CAS  Google Scholar 

  44. Wang, S. B., & Peng, Y. L. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 156, 11–24. DOI: 10.1016/j.cej.2009.10.029.

    Article  CAS  Google Scholar 

  45. Xue, N. T., Wang, Q. H., Wu, C. F., Zhang, L. H., & Xie, W. M. (2010). Enhanced removal of NH3 during composting by a biotrickling filter inoculated with nitrifying bacteria. Biochemical Engineering Journal, 51, 86–93. DOI: 10.1016/j.bej.2010.05.007.

    Article  CAS  Google Scholar 

  46. Yasuda, T., Kuroda, K., Fukumoto, Y., Hanajima, D., & Suzuki, K. (2009). Evaluation of full-scale biofilter with rockwoll mixture treating ammonia gas from livestock manure composting. Bioresource Technology, 100, 1568–1572. DOI: 10.1016/j.biortech.2008.09.033.

    Article  CAS  Google Scholar 

  47. Zeng, Y., De Guardia, A., Ziebal, C., De Macedo, F. J., & Dabert, P. (2012). Nitrification and microbiological evolution during aerobic treatment of municipal solid wastes. Bioresource Technology, 110, 144–152. DOI: 10.1016/j.biortech.2012.01.135.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dajana Kučić.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kučić, D., Kopčić, N. & Briški, F. Zeolite and potting soil sorption of CO2 and NH3 evolved during co-composting of grape and tobacco waste. Chem. Pap. 67, 1172–1180 (2013). https://doi.org/10.2478/s11696-013-0322-z

Download citation

Keywords

  • co-composting
  • exhaust gases (CO2 and NH3)
  • sorption
  • zeolite
  • potting soil