Skip to main content

Advertisement

Log in

Base-catalysed reduction of pyruvic acid in near-critical water

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The reduction of pyruvic acid in near-critical water has successfully been conducted under conditions of various temperatures, pressures, reaction time and the presence of formic acid as the reducing agent. In this work, additives (K2CO3, KHCO3, and sodium acetate) used in the reduction of pyruvic acid were also investigated. The results showed that by adding K2CO3 (25 mole %) a markedly higher lactic acid yield (70.7 %) was obtained than without additives (31.3 %) at 573.15 K, pressure of 8.59 MPa, 60 min, and in the presence of 2 mol L−1 formic acid. As a base catalyst, K2CO3 definitely accelerated the reduction of pyruvic acid. The reaction rate constants, average apparent activation energy and pre-exponential factor were evaluated in accordance with the Arrhenius equation. The reaction mechanism of the reduction was proposed on the basis of the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adsul, M. G., Varma, A. J., & Gokhale, D. V. (2007). Lactic acid production from waste sugarcane bagasse derived cellulose. Green Chemistry, 9, 58–62. DOI: 10.1039/b605839f.

    Article  CAS  Google Scholar 

  • Fujii, A., Hashiguchi, S., Uematsu, N., Ikariya, T., & Noyori, R. (1996). Ruthenium(II)-catalyzed asymmetric transfer hydrogenation of ketones using a formic acid-triethylamine mixture. Journal of the American Chemical Society, 118, 2521–2522. DOI: 10.1021/ja954126l.

    Article  CAS  Google Scholar 

  • Ashby, E. E., Coleman, D. T., III, & Gamasa, M. P. (1983). Evidence supporting a single electron transfer pathway in the Cannizzaro reaction. Tetrahedron Letters, 24, 851–854. DOI: 10.1016/s0040-4039(00)81546-4.

    Article  CAS  Google Scholar 

  • Ashby, E. C., Coleman, D., & Gamasa, M. (1987). Single electron transfer in the Cannizzaro reaction. The Journal of Organic Chemistry, 52, 4079–4085. DOI: 10.1021/jo00227a025.

    Article  CAS  Google Scholar 

  • Bröll, D., Kaul, C., Krämer, A., Krammer, P., Richter, T., Jung, M., Vogel, H., & Zehner, P. (1999). Chemistry in supercritical water. Angewandte Chemie International Edition, 38, 2998–3014. DOI: 10.1002/(SICI)1521-3773(19991018)38:20〈2998::AID-ANIE2998〉3.0.CO;2-L.

    Article  Google Scholar 

  • Chang, Y. J., Wang, Z. Z., Luo, L. G., & Dai, L. Y. (2012). Additive-assisted Rupe rearrangement of 1-ethynylcyclohexan-1-ol in near-critical water. Chemical Papers, 66, 33–38. DOI: 10.2478/s11696-011-0093-3.

    Article  CAS  Google Scholar 

  • Chung, S. K. (1982). Mechanism of the Cannizzaro reaction: possible involvement of radical intermediates. Journal of the Chemical Society, Chemical Communications, 1982, 480–481. DOI:10.1039/c39820000480.

    Article  Google Scholar 

  • Duan, P. G., Li, S., Wang, Z. Z., & Dai, L. Y. (2007a). Hydrolysis kinetics and mechanism of adipamide in high temperature water. Chemical Engineering Research and Design, 88, 1067–1072. DOI:10.1016/j.cherd.2010.01.031.

    Article  Google Scholar 

  • Duan, P. G., Wang, X., & Dai, L. Y. (2007b). Noncatalytic hydrolysis of iminodiacetonitrile in near-critical water-A green process for the manufacture of iminodiacetic acid. Chemical Engineering & Technology, 30, 265–269. DOI:10.1002/ceat.200600298.

    Article  CAS  Google Scholar 

  • Geissman, T. A. (1944). The Cannizzaro reaction. In Organic reactions (Vol. II, Chapter 3, pp. 94–113). New York, NY, USA: Wiley. DOI: 10.1002/0471264180.or002.03.

    Google Scholar 

  • Ikushima, Y., Hatakeda, K., Sato, O., Yokoyama, T., & Arai, M. (2001). Structure and base catalysis of supercritical water in the noncatalytic benzaldehyde disproportionation using water at high temperatures and pressures. Angewandte Chemie International Edition, 40, 210–213. DOI: 10.1002/1521-3773(20010105)40:1〈210::AID-ANIE210〉3.0.CO;2-7.

    Article  CAS  Google Scholar 

  • Inkinen, S., Hakkarainen, M., Albertsson, A. C., & Södergård, A. (2011). From lactic acid to poly(lactic acid) (PLA): Characterization and analysis of PLA and its precursors. Biomacromolecules, 12, 523–532. DOI: 10.1021/bm101302t.

    Article  CAS  Google Scholar 

  • Joo, M. J., Merkel, C., Auras, R., & Almenar, E. (2012). Development and characterization of antimicrobial poly (l-lactic acid) containing trans-2-hexenal trapped in cyclodextrins. International Journal of Food Microbiology, 153, 297–305. DOI:10.1016/j.ijfoodmicro.2011.11.015.

    Article  CAS  Google Scholar 

  • Kabyemela, B. M., Adschiri, T., Malaluan, R. M., & Arai, K. (1997). Kinetics of glucose epimerization and decomposition in subcritical and supercritical water. Industrial & Engineering Chemistry Research, 36, 1552–1558. DOI: 10.1021/ie960250h.

    Article  CAS  Google Scholar 

  • Kruse, A., & Dinjus, E. (2007). Hot compressed water as reaction medium and reactant: Properties and synthesis reactions. The Journal of Supercritical Fluids, 39, 362–380. DOI:10.1016/j.supflu.2006.03.016.

    Article  CAS  Google Scholar 

  • Lasprilla, A. J. R., Martinez, G. A. R., Lunelli, B. H., Jardini, A. L., & Maciel Filho, R. (2012). Poly-lactic acid synthesis for application in biomedical devices — A review. Biotechnology Advances, 30, 321–328. DOI:10.1016/j.biotechadv.2011.06.019.

    Article  CAS  Google Scholar 

  • Li, L. X., Portela, J. R., Vallejo, D., & Gloyna, E. F. (1999). Oxidation and hydrolysis of lactic acid in near-critical water. Industrial & Engineering Chemistry Research, 38, 2599–2606. DOI: 10.1021/ie980520r.

    Article  CAS  Google Scholar 

  • Matharu, D. S., Morris, D. J., Clarkson, G. J., & Wills, M. (2006). An outstanding catalyst for asymmetric transfer hydrogenation in aqueous solution and formic acid/triethylamine. Chemical Communications, 2006, 3232–3234. DOI: 10.1039/b606288a.

    Article  Google Scholar 

  • Naskar, S., & Bhattacharjee, M. (2007). Selective N-monoalkylation of anilines catalyzed by a cationic ruthenium(II) compound. Tetrahedron Letters, 48, 3367–3370. DOI: 10.1016/j.tetlet.2007.03.075.

    Article  CAS  Google Scholar 

  • Nolen, S. A., Liotta, C. L., Eckert, C. A., & Gläser, R. (2003). The catalytic opportunities of near-critical water: a benign medium for conventionally acid and base catalyzed condensations for organic synthesis. Green Chemistry, 2003, 663–669. DOI: 10.1039/b308499j.

    Article  Google Scholar 

  • Panwar, N. L., Kothari, R., & Tyagi, V. V. (2012). Thermo chemical conversion of biomass — Eco friendly energy routes. Renewable & Sustainable Energy Reviews, 16, 1801–1816. DOI:10.1016/j.rser.2012.01.024.

    Article  CAS  Google Scholar 

  • Sato, N., Quitain, A. T., Kang, K., Daimon, H., & Fujie, K. (2004). Reaction kinetics of amino acid decomposition in high-temperature and high-pressure water. Industrial & Engineering Chemistry Research, 43, 3217–3222. DOI: 10.1021/ie020733n.

    Article  CAS  Google Scholar 

  • Savage, P. E. (1999). Organic chemical reactions in supercritical water. Chemical Reviews, 99, 603–621. DOI: 10.1021/cr9700989.

    Article  CAS  Google Scholar 

  • Siskin, M., & Katritzky, A. R. (2001). Reactivity of organic compounds in superheated water: General background. Chemical Reviews, 101, 825–836. DOI: 10.1021/cr000088z.

    Article  CAS  Google Scholar 

  • Socha, R. F., & Weiss, A. H., & Sakharov, M. M. (1981). Homogeneously catalyzed condensation of formaldehyde to carbohydrates: VII. An overall formose reaction model. Journal of Catalysis, 67, 207–217. DOI: 10.1016/0021-9517(81)90272-4.

    CAS  Google Scholar 

  • Swain, C. G., Powell, A. L., Sheppard, W. A., & Morgan, C. R. (1979). Mechanism of the Cannizzaro reaction. Journal of the American Chemical Society, 101, 3576–3583. DOI: 10.1021/ja00507a023.

    Article  CAS  Google Scholar 

  • Wang, C. W., Zhou, F. L., Yang, Z., Wang, W. G., Yu, F. Q., Wu, Y. X., & Chi, R. A. (2012). Hydrolysis of cellulose into reducing sugar via hot-compressed ethanol/water mixture. Biomass & Bioenergy, 42, 143–150. DOI: 10.1016/j.biombioe.2012.03.004.

    Article  CAS  Google Scholar 

  • Watanabe, M., Sato, T., Inomata, H., Smith, R. L., Jr., Arai, K., Kruse, A., & Dinjus, E. (2004). Chemical reactions of C1 compounds in near-critical and supercritical water. Chemical Reviews, 104, 5803–5821. DOI: 10.1021/cr020415y.

    Article  CAS  Google Scholar 

  • Wee, Y. J., Yun, J. S., Kim, D., & Ryu, H.W. (2006). Batch and repeated batch production of L(+)-lactic acid by Enterococcus faecalis RKY1 using wood hydrolyzate and corn steep liquor. Journal of Industrial Microbiology & Biotechnology, 33, 431–435. DOI: 10.1007/s10295-006-0084-5.

    Article  CAS  Google Scholar 

  • Yagasaki, T., Saito, S., & Ohmine, I. (2002). A theoretical study on decomposition of formic acid in sub- and supercritical water. The Journal of Chemical Physics, 117, 7631–7639. DOI: 10.1063/1.1509057.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Yuan Wang or Li Yi Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, L.G., Hou, Z.Q., Wang, Y.Y. et al. Base-catalysed reduction of pyruvic acid in near-critical water. Chem. Pap. 67, 509–516 (2013). https://doi.org/10.2478/s11696-013-0308-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0308-x

Keywords

Navigation