Chemical Papers

, Volume 67, Issue 5, pp 497–508 | Cite as

Removal of heavy metal ions from aqueous solutions using low-cost sorbents obtained from ash

  • Maria Harja
  • Gabriela Buema
  • Daniel Mircea Sutiman
  • Igor Cretescu
Original Paper


This study’s main objective was the development of effective low-cost sorbents for the removal of heavy metal ions from aqueous solutions. The influence of different factors on the sorption capacity of ash and modified ash as low-cost sorbents obtained by different methods was investigated. The synthesis of new ash-based materials was carried out at ambient temperature (20°C), 70°C, and 90°C, respectively, in an alkaline medium with NaOH concentrations of 2 M and 5 M, respectively, corresponding to a mixture with solid/liquid ratios of 1: 3 and 1: 5, respectively. The prepared materials (sorbents) were characterised by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), X-ray diffraction, and BET surface measurement. Adsorption isotherms were determined using the batch equilibrium method. The results showed that these types of new materials displayed a good capacity to remove copper, nickel, and lead ions (29.97 mg of Cu2+ per g of sorbent, 303 mg of Ni2+ per g of sorbent, and 1111 mg of Pb2+ per g of sorbent) from aqueous solutions. The modified materials were prepared using an alkaline attack (a recognised method used in previous studies), but Romanian ash from a thermal power plant was studied for the above purpose for the first time. Hence, the factors which affect the sorption capacity of the prepared low-cost sorbents were determined and their behaviour was explained, taking into account the composition and structure of the new materials.


ash characterisation heavy metal low-cost sorbent sorbent synthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Zboon, K., Al-Harahsheh, M. S., & Hani, F. B. (2011). Fly ash-based geopolymer for Pb removal from aqueous solution. Journal of Hazardous Materials, 188, 414–421. DOI:10.1016/j.jhazmat.2011.01.133.CrossRefGoogle Scholar
  2. Babel, S., & Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials, 97, 219–243. DOI: 10.1016/s0304-3894(02)00263-7.CrossRefGoogle Scholar
  3. Buema, G., Cimpeanu, S. M., Sutiman, D. M., Bucur, R. D., Rusu, L., Cretescu, I., Ciocinta, R. C., & Harja, M. (2013). Lead removal from aqueous solution by bottom ash. Journal of Food, Agriculture & Environment. (submitted for press)Google Scholar
  4. Ciobanu, G., Ignat, D., Carja, G., & Luca, C. (2009). Hydroxyapatite/polyurethane composite membranes for lead ions removal. Environmental Engineering and Management Journal, 8, 1347–1350.Google Scholar
  5. Ciocinta, R. C., Harja, M., Bucur, D., Rusu, L., Barbuta, M., & Munteanu, C. (2012). Improving soil quality by adding modified ash. Environmental Engineering and Management Journal, 11, 297–305.Google Scholar
  6. Depoi, F. S., Pozebon, D., & Kalkreuth, W. D. (2008). Chemical characterization of feed coals and combustion-by-products from Brazilian power plants. International Journal of Coal Geology, 76, 227–236. DOI:10.1016/j.coal.2008.07.013.CrossRefGoogle Scholar
  7. Djomgoue, P., Siewe, M., Djoufac, E., Kenfack, P., & Njopwouo, D. (2012). Surface modification of Cameroonian magnetite rich clay with Eriochrome Black T. Application for adsorption of nickel in aqueous solution. Applied Surface Science, 258, 7470–7479. DOI:10.1016/j.apsusc.2012.04.065.Google Scholar
  8. Derco, J., Černochová, L., Krcho, L., & Lalai, A. (2011). Dynamic simulations of waste water treatment plant operation. Chemical Papers, 65, 813–821. DOI: 10.2478/s11696-011-0076-4.CrossRefGoogle Scholar
  9. Gupta, V. K., Carrott, P. J. M., Ribeiro Carrott, M. M. L., & Suhas (2009). Low-cost adsorbents: Growing approach to wastewater treatment — a review. Critical Reviews in Environmental Science and Technology, 39, 783–842. DOI:10.1080/10643380801977610.CrossRefGoogle Scholar
  10. Harja, M, Bąrbutą, M, & Gavrilescu, M. (2009). Study of morphology for geopolymer materials obtained from fly ash. Environmental Engineering and Management Journal, 8, 1021–1027.Google Scholar
  11. Harja, M., Barbuta, M., Rusu, L., Munteanu, C., Buema, G., & Doniga, E. (2011a). Simultaneous removal of Astrazone blue and lead onto low cost sorbents based on power plant ash. Environmental Engineering and Management Journal, 10, 341–347.Google Scholar
  12. Harja, M., Gurita, A. A., Barbuta, M., & Ciocinta, R. C. (2011b). Zelites from power plant ash for waste water treatment. Lucrari àtiinifice. Seria Agronomie, 54(Supplement), 30–34.Google Scholar
  13. Harja, M., Bucur, D., Cimpeanu, S. M., Ciocinta, R. C., & Gurita, A. A. (2012a). Conversion of ash on zeolites for soil application. Journal of Food, Agriculture & Environment, 10(2), 1056–1059.Google Scholar
  14. Harja, M., Buema, G., Sutiman, D. M., Munteanu, C., & Bucur, D. (2012b). Low cost adsorbents obtained from ash for copper removal. Korean Journal of Chemical Engineering. DOI: 10.1007/s11814-012-0087-z. (in press)Google Scholar
  15. Harja, M., Rusu, L., Bucur, D., & Ciocinta, R. C. (2012c). Fly ash-derived zeolites as adsorbents for Ni removal from wastewater. Revue Roumaine de Chimie. (submitted for press)Google Scholar
  16. Hernandez-Ramirez, O., & Holmes, S. M. (2008). Novel and modified materials for wastewater treatment applications. Journal of Material Chemistry, 18, 2751–2761. DOI: 10.1039/b716941h.CrossRefGoogle Scholar
  17. Izidoro, J. C., Fungaro, D. A., dos Santos, F., & Wang, S. B. (2012a). Characteristics of Brazilian coal fly ashes and their synthesized zeolites. Fuel Processing Technology, 97, 38–44. DOI:10.1016/j.fuproc.2012.01.009.CrossRefGoogle Scholar
  18. Izidoro, J. C., Fungaro, D. A., & Wang, S. B. (2012b). Zeolite synthesis from Brazilian coal fly ash for removal of Zn2+ and Cd2+ from water. Advanced Materials Research, 356–360, 1900–1908. DOI: 10.4028/ Scholar
  19. Ojha, K., Pradhan, N. C., & Samanta, A. M. (2004). Zeolite from fly ash: synthesis and characterization. Bulletin of Materials Science, 27, 555–564. DOI: 10.1007/bf02707285.CrossRefGoogle Scholar
  20. Olgun, A., & Atar, N. (2012). Equilibrium, thermodynamic and kinetic studies for the adsorption of lead (II) and nickel (II) onto clay mixture containing boron impurity. Journal of Industrial and Engineering Chemistry, 18, 1751–1757. DOI:10.1016/j.jiec.2012.03.020.CrossRefGoogle Scholar
  21. Ozturkcan, A. S., Turhan, K., & Turgut, Z. (2012). Ultrasoundassisted rapid synthesis of β-aminoketones with direct-type catalytic Mannich reaction using bismuth(III) triflate in aqueous media at room temperature. Chemical Papers, 66, 61–66. DOI: 10.2478/s11696-011-0097-z.CrossRefGoogle Scholar
  22. Paprocki, A. (2009). Síntese de zeólitas a partir de cinzas de carvão visando sua utilização na descontaminação de drenagem ácida de mina. Ms. thesis. Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.Google Scholar
  23. Piuleac, C. G., Curteanu, S., & Cazacu, M. (2010). Optimization by NN-GA technique of the metal complexing process. Potential application in wastewater treatment. Environmental Engineering and Management Journal, 9, 239–247.Google Scholar
  24. Pires, M., & Querol, X. (2004). Characterization of Candiota (South Brazil) coal and combustion by-product. International Journal of Coal Geology, 60, 57–72. DOI:10.1016/j.coal.2004.04.003.CrossRefGoogle Scholar
  25. Poole, C., Prijatama, H., & Rice, N. M. (2000). Synthesis of zeolite adsorbents by hydrothermal treatment of PFA wastes: A comparative study. Minerals Engineering, 13, 831–842. DOI: 10.1016/s0892-6875(00)00072-8.CrossRefGoogle Scholar
  26. Qiu, W., & Zheng, Y. (2009). Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash. Chemical Engineering Journal, 145, 483–488. DOI:10.1016/j.cej.2008.05.001.CrossRefGoogle Scholar
  27. Querol, X., Moreno, N., Umaña, J. C., Alastuey, A., Hernández, E., López-Soler, A., & Plana, F. (2002). Synthesis of zeolites from coal fly ash: an overview. International Journal of Coal Geology, 50, 413–423. DOI: 10.1016/s0166-5162(02)00124-6.CrossRefGoogle Scholar
  28. Rasouli, M., Yaghobi, N., Hafezi, M., & Rasouli, M. (2012). Adsorption of divalent lead ions from aqueous solution using low silica nano-zeolite X. Journal of Industrial and Engineering Chemistry, 18, 1970–1976. DOI:10.1016/j.jiec.2012.05.014.CrossRefGoogle Scholar
  29. Rosales, E., Pazos M., Sanromán, M. A., & Tavares, T. (2012). Application of zeolite-Arthrobacter viscosus system for theremoval of heavy metal and dye: Chromium and Azure B. Desalination, 284, 150–156. DOI:10.1016/j.desal.2011.08.049.CrossRefGoogle Scholar
  30. Ryu, T. G., Ryu, J. C., Choi, C. H., Kim, C. G., Yoo, S. J., Yang, H. S., & Kim, Y. H. (2006). Preparation of Na-P1 zeolite with high cation exchange capacity from coal fly ash. Journal of Industrial and Engineering Chemistry, 12, 401–407.Google Scholar
  31. Sarbak, Z., Stańczyk, A., & Kramer-Wachowiak, M. (2004). Characterization of surface properties of various fly ashes. Powder Technology, 145, 82–87. DOI:10.1016/j.powtec.2004. 04.041.CrossRefGoogle Scholar
  32. Scott, J., Guang, D., Naeramitmarnsuk, K., Thabuot, M., & Amal, R. (2001). Zeolite synthesis from coal fly ash for the removal of lead ions from aqueous solution. Journal of Chemical Technology and Biotechnology, 77, 63–69. DOI: 10.1002/jctb.521.CrossRefGoogle Scholar
  33. Shiguemoto, N., Hayashi, H., & Miyaura, K. (1993). Selective formation of Na-X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction. Journal of Materials Science, 28, 4781–4786. DOI: 10.1007/bf00414272.CrossRefGoogle Scholar
  34. Šljivić, M., Smičiklas, I., Pejanović, S., & Plećaš, I. (2009). Comparative study of Cu2+ adsorption on a zeolite, a clay and a diatomite from Serbia. Applied Clay Science, 43, 33–40. DOI:10.1016/j.clay.2008.07.009.CrossRefGoogle Scholar
  35. Sprynskyy, M., Buszewski, B., Terzyk, A. P., & Namieśnik, J. (2006). Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. Journal of Colloid and Interface Science, 304, 21–28. DOI:10.1016/j.jcis.2006.07.068.CrossRefGoogle Scholar
  36. Um, N. I., Han, G. C., You, K. S., & Ahn, J. W. (2009). Immobilization of Pb, Cd and Cr by synthetic NaP1 zeolites from coal bottom ash treated by density separation. Resources Processing, 56, 130–137. DOI: 10.4144/rpsj.56.130.CrossRefGoogle Scholar
  37. Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology, 2011, 402647. DOI:10.5402/2011/402647.CrossRefGoogle Scholar
  38. Xu, D., Zhou, X., & Wang, X. K. (2008). Adsorption and desorption of Ni2+ on Na-montmorillonite: Effect of pH, ionic strength, fulvic acid, humic acid and addition sequences. Applied Clay Science, 39, 133–141. DOI:10.1016/j.clay.2007.05. 006.CrossRefGoogle Scholar
  39. Yadanaparthi, S. K. R., Graybill, D., & von Wandruszka, R. (2009). Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters. Journal of Hazardous Materials, 171, 1–15. DOI: 10.1016/j.jhazmat.2009.05.103.CrossRefGoogle Scholar
  40. Zhang, M. K., Liu, Z. Y., & Wang, H. (2010). Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Communications in Soil Science and Plant Analysis, 41, 820–831. DOI: 10.1080/00103621003592 341.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2012

Authors and Affiliations

  • Maria Harja
    • 1
  • Gabriela Buema
    • 1
  • Daniel Mircea Sutiman
    • 1
  • Igor Cretescu
    • 2
  1. 1.Department of Chemical Engineering“Gheorghe Asachi” Technical University of IasiIasiRomania
  2. 2.Department of Environmental Engineering and Management, Faculty of Chemical Engineering and Environmental Protection“Gheorghe Asachi” Technical University of IasiIasiRomania

Personalised recommendations