Skip to main content

Advertisement

Log in

Alkali pre-treatment of Sorghum Moench for biogas production

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

This work studies the influence of the alkali pre-treatment of Sorghum Moench — a representative of energy crops used in biogas production. Solutions containing various concentrations of sodium hydroxide were used to achieve the highest degradation of lignocellulosic structures. The results obtained after chemical pre-treatment indicate that the use of NaOH leads to the removal of almost all lignin (over 99 % in the case of 5 mass % NaOH) from the biomass, which is a prerequisite for efficient anaerobic digestion. Several parameters, such as chemical oxygen demand, total organic carbon, total phenolic content, volatile fatty acids, and general nitrogen were determined in the hydrolysates thus obtained in order to define the most favourable conditions. The best results were obtained for the Sorghum treated with 5 mass % NaOH at 121°C for 30 min The hydrolysate thus achieved consisted of high total phenolic compounds concentration (ca. 4.7 g L−1) and chemical oxygen demand value (ca. 45 g L−1). Although single alkali hydrolysis causes total degradation of glucose, a combined chemical and enzymatic pre-treatment of Sorghum leads to the release of large amounts of this monosaccharide into the supernatant. This indicates that alkali pre-treatment does not lead to complete cellulose destruction. The high degradation of lignin structure in the first step of the pre-treatment rendered the remainder of the biomass available for enzymatic action. A comparison of the efficiency of biogas production from untreated Sorghum and Sorghum treated with the use of NaOH and enzymes shows that chemical hydrolysis improves the anaerobic digestion effectiveness and the combined pre-treatment could have great potential for methane generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amon, T., Amon, B., Kryvoruchko, V., Machmüller, A., Hopfner-Sixt, K., Bodiroza, V., Hrbek, R., Friedel, J., Pötsch, E., Wagentristl, H., Schreiner, M., & Zollitsch, W. (2007). Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresource Technology, 98, 3204–3212 DOI: 10.1016/j.biortech.2006.07.007.

    Article  CAS  Google Scholar 

  • Antonopoulou, G., Gavala, H. N., Skiadas, I. V., Angelopoulos, K., & Lyberatos, G. (2008). Biofuels generation from sweet sorghum: Fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresource Technology, 99, 110–119. DOI: 10.1016/j.biortech.2006.11.048.

    Article  CAS  Google Scholar 

  • Appels, L., Baeyens, J., Degrève, J., & Dewil, R. (2008). Principles and potential of anaerobic digestion of waste-active sludge. Progress in Energy and Combustion Science, 34, 755–781. DOI: 10.1016/j.pecs.2008.06.002.

    Article  CAS  Google Scholar 

  • Arantes, V., Milagres, A. M. F., Filley, T. R., & Goodell, B. (2011). Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: the relevance of nonenzymatic Fenton-based reactions. Journal of Industrial Microbiology & Biotechnology, 38, 541–555. DOI: 10.1007/s10295-010-0798-2.

    Article  CAS  Google Scholar 

  • Baudel, H. M., Zaror, C., & de Abreu, C. A. M. (2005). Improving the value of sugarcane bagasse wastes via integrated chemical production systems: an environmentally friendly approach. Industrial Crops and Products, 21, 309–315. DOI: 10.1016/j.indcrop.2004.04.013.

    Article  CAS  Google Scholar 

  • Cao, W., Sun, C., Liu, R., Yin, R., & Wu, X. (2012). Comparison of the effects of five pretreatment methods on enhancing the enzymatic digestibility and ethanol production from sweet sorghum bagasse. Bioresource Technology, 111, 215–221. DOI: 10.1016/j.biortech.2012.02.034.

    Article  CAS  Google Scholar 

  • Cara, C., Ruiz, E., Oliva, J. M., Sáez, F., & Castro, E. (2008). Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification. Bioresource Technology, 99, 1869–1876. DOI: 10.1016/j.biortech.2007.03.037.

    Article  CAS  Google Scholar 

  • Carballa, M., Manterola, G., Larrea, L., Ternes, T., Omil, F., & Lema, J. M. (2007). Influence of ozone pre-treatment on sludge anaerobic digestion: Removal of pharmaceutical and personal care products. Chemosphere, 67, 1444–1452. DOI: 10.1016/j.chemosphere.2006.10.004.

    Article  CAS  Google Scholar 

  • da Costa Sousa, L., Chundawat, S. P. S., Balan, V., & Dale, B. E. (2009). ’Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Current Opinion in Biotechnology, 20, 339–347. DOI: 10.1016/j.copbio.2009.05.003.

    Article  Google Scholar 

  • Gunaseelan, V. N. (2004). Biochemical methane potential of fruits and vegetable solid waste feedstock. Biomass and Bioenergy, 26, 389–399. DOI: 10.1016/j.biombioe.2003.08.006.

    Article  CAS  Google Scholar 

  • Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100, 10–18. DOI: 10.1016/j.biortech.2008.05.027.

    Article  CAS  Google Scholar 

  • Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48, 3713–3729. DOI: 10.1021/ie801542g.

    Article  CAS  Google Scholar 

  • Kürschner, K., & Hoffer, A. (1931). A new quantitative cellulose determination. Chemiker-Zeitung, 55, 161–163, 182–184.

    Google Scholar 

  • Lenihan, P., Orozco, A., O’Neill, E., Ahmad, M. N. M., Rooney, D. W., & Walker, G. M. (2010). Dilute acid hydrolysis of lignocellulosic biomass. Chemical Engineering Journal, 156, 395–403. DOI: 10.1016/j.cej.2009.10.061.

    Article  CAS  Google Scholar 

  • McIntosh, S., & Vancov, T. (2010). Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment. Bioresource Technology, 101, 6718–6727. DOI: 10.1016/j.biortech.2010.03.116.

    Article  CAS  Google Scholar 

  • Michalska, K., Miazek, K., Krzystek, L., & Ledakowicz, S. (2012). Influence of pretreatment with Fenton’s reagent on biogas production and methane yield from lignocellulosic biomass. Bioresource Technology, 119, 72–78. DOI: 10.1016/j.biortech.2012.05.105.

    Article  CAS  Google Scholar 

  • Michalska, K., & Ledakowicz, S. (2012). Degradation of lignocellulosic structures and the products of their decomposition. Inżynieria i Aparatura Chemiczna, 51, 157–159.

    CAS  Google Scholar 

  • Michaud, S., Bernet, N., Buffière, P., Roustan, M., & Moletta, R. (2002). Methane yield as a monitoring parameter for the start-up of anaerobic fixed film reactors. Water Research, 36, 1385–1391. DOI: 10.1016/s0043-1354(01)00338-4.

    Article  CAS  Google Scholar 

  • Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686. DOI: 10.1016/j.biortech.2004.06.025.

    Article  CAS  Google Scholar 

  • Piecha-Marasek, M. (1992). Raw metrials for papers industry — pulpwood — chemical analysis. Retrieved June 15, 2012, from http://infostore.saiglobal.com/store/Details.aspx?ProductID=321814

  • Rabelo, S. C., Filho, R. M., & Costa, A. C. (2008). A comparison between lime and alkaline hydrogen peroxide pretreatments of sugarcane bagasse for ethanol production. Applied Biochemistry and Biotechnology, 144, 87–100. DOI: 10.1007/s12010-007-8086-y.

    Article  CAS  Google Scholar 

  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagent. American Journal of Enology and Viticulture, 16, 144–158.

    CAS  Google Scholar 

  • Vancov, T., & McIntosh, S. (2012). Mild acid pretreatment and enzyme saccharification of Sorghum bicolor straw. Applied Energy, 92, 421–428. DOI: 10.1016/j.apenergy.2011.11.053.

    Article  CAS  Google Scholar 

  • Wang, Z., Keshwani, D. R., Redding, A. P., & Cheng, J. J. (2010). Sodium hydroxide pretreatment and enzymatic hydrolysis of coastal Bermuda grass. Bioresource Technology, 101, 3583–3585. DOI: 10.1016/j.biortech.2009.12.097.

    Article  CAS  Google Scholar 

  • Whitfield, M. B., Chinn, M. S., & Veal, M. W. (2012). Processing of materials derived from sweet sorghum for biobased products. Industrial Crops and Products, 37, 362–375. DOI: 10.1016/j.indcrop.2011.12.011.

    Article  CAS  Google Scholar 

  • Wu, L., Arakane, M., Ike, M., Wada, M., Takai, T., Gau, M., & Tokuyasu, K. (2011). Low temperature alkali pretreatment for improving enzymatic digestibility of sweet sorghum bagasse for ethanol production. Bioresource Technology, 102, 4793–4799. DOI: 10.1016/j.biortech.2011.01.023.

    Article  CAS  Google Scholar 

  • Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., & Lee, Y. Y. (2005). Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 96, 1959–1966. DOI: 10.1016/j.biortech.2005.01.010.

    Article  CAS  Google Scholar 

  • Xu, F., Shi, Y. C., Wu, X., Theerarattananoon, K., Staggenborg, S., & Wang, D. (2011). Sulfuric acid pretreatment and enzymatic hydrolysis of photoperiod sensitive sorghum for ethanol production. Bioprocess and Biosystems Engineering, 34, 485–492. DOI: 10.1007/s00449-010-0492-9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina Michalska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michalska, K., Ledakowicz, S. Alkali pre-treatment of Sorghum Moench for biogas production. Chem. Pap. 67, 1130–1137 (2013). https://doi.org/10.2478/s11696-012-0298-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0298-0

Keywords

Navigation