Abstract
This paper presents a kinetic analysis of the biodegradation of organic pollutants in a batch bioreactor and investigates the kinetic properties of activated sludge using different mathematical models. The treatment was conducted for different initial concentrations of leachate from 500 mg dm−3 to 5000 mg dm−3 and initial concentrations of activated sludge from 1.84 g dm−3 to 6.62 g dm−3 over 48 h. Four different kinetic models were applied to the data. The kinetic analysis was performed with the traditional Monod model, the modified Monod model with endogenous metabolism, the Haldane model, and the Haldane model extended to include endogenous metabolic consumption and known as the Endo-Haldane model. Kinetic parameters for each model were determined using differential analysis and the Nelder-Mead method of non-linear regression. The lowest deviations and very good matches with the experimental data were achieved using the Endo-Haldane model. This indicated that this model best described the process of biodegradation of leachate from tobacco waste composting. This is due to this model incorporating the effects both of inhibition and endogenous metabolism.
This is a preview of subscription content, access via your institution.
References
Al-Malack, M. H. (2006). Determination of biokinetic coefficients of an immersed membrane bioreactor. Journal of Membrane Science, 271, 47–58. DOI: 10.1016/j.memsci.2005.07.008.
APHA-AWWA-WEF (1999). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC, USA: American Public Health Association.
Bae, B. U., Jung, E. S., Kim, Y. R., & Shin, H. S. (1999). Treatment of landfill leachate using activated sludge process and electron-beam radiation. Water Resources, 33, 2669–2673. DOI: 10.1016/s0043-1354(98)00488-6.
Beltran, J., Gonzalez, T., & Garcia, J. (2008). Kinetics of the biodegradation of green table olive wastewaters by aerobic and anaerobic treatments. Journal of Hazardous Materials, 154, 839–845. DOI: 10.1016/j.jhazmat.2007.10.102.
Beltran de Heredia, J., Torregrosa, J., Dominguez, J. R., & Partido, E. (2005). Degradation of wine distillery wastewaters by the combination of aerobic biological treatment with chemical oxidation by Fenton’s reagent. Water Science & Technology, 51(1), 167–174.
Bitton, G. (2005). Wastewater microbiology (3rd ed., pp. 211–259). Hoboken, NJ, USA: Wiley.
Briški, F., Kopčić, N., Ćosić, I., Kučić, D., & Vuković, M. (2012). Biodegradation of tobacco waste by composting: Genetic identification of nicotine-degrading bacteria and kinetic analysis of transformations in leachate. Chemical Papers, 66, 166, 1103–1110. DOI: 10.2478/s11696-012-0234-3.
Bronstein, I. N., Semendjajev, K. A., Musiol, G., & Mühlig, H. (2004). Mathematical handbook (pp. 764, 794–797). Zagreb, Croatia: Golden Marketing-Tehnička Knjiga. (in Croatian)
Casey, T. J. (1997). Unit treatment processes in water and waste engineering. New York, NY, USA: Wiley.
Celis, E., Elefsiniotis, P., & Singhal, N. (2008). Biodegradation of agricultural herbicides in sequencing batch reactors under aerobic and anaerobic conditions. Water Research, 42, 3218–3224. DOI: 10.1016/j.watres.2008.04.008.
Derco, J., Černochová, L., Krcho, L., & Lalai, A. (2011). Dynamic simulations of waste water treatment plant operation. Chemical Papers, 65, 813–821, DOI: 10.2478/s11696-011-0076-4.
Dollerer, J., & Wilderer, P. A. (1996). Biological treatment of leachates from hazardous waste landfills using SBBR technology. Water Science and Technology, 34, 437–444. DOI: 10.1016/s0273-1223(96)00776-7.
European Committee for Standardization (2002). European standard: Characterization of waste — Leaching — Compliance test for leaching of granular waste materials and sludges — Part 4: One-stage batch test at a liquid to solids ratio of 10 l/kg for materials with particle size below 10 mm (without or with size reduction). EN 12457-4. Brussels, Belgium.
Gnanapragasam, G., Senthilkumar, M., Arutchelvan, V., Velayutham, T., & Nagarajan, S. (2011). Bio-kinetic analysis on treatment of textile dye wastewater using anaerobic batch reactor. Bioresource Technology, 102, 627–632. DOI: 10.1016/j.biortech.2010.08.012.
Holenda, B., Domokos, E., Rédey, A., & Fazakas, J. (2008). Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control. Computers & Chemical Engineering, 32, 1270–1278. DOI: 10.1016/j.compchemeng.2007.06.008.
Huang, X., Gui, P., & Qian, Y. (2001). Effect of sludge retention time on microbial behaviour in a submerged membrane bioreactor. Process Biochemistry, 36, 1001–1006. DOI: 10.1016/s0032-9592(01)00135-2.
Mardani, Sh., Mirbagheri, A., Amin., M. M., & Ghasemian, M. (2011). Determination of biokinetic coefficients for activated sludge processes on municipal wastewater. Iranian Journal of Environmental Health Science & Engineering, 8(1), 25–34.
Mendenhall, W. (1964). Introduction to statistics (pp. 37–38, 160–165). Belmont, CA, USA: Wadsworth Publishing Company.
Nuhoglu, A., & Yalcin, B. (2005). Modelling of phenol removal in a batch reactor. Process Biochemistry, 40, 1233–1239. DOI: 10.1016/j.procbio.2004.04.003.
Okpokwasili, G. C., & Nweke, C. O. (2005). Microbial growth and substrate utilization kinetics. African Journal of Biotechnology, 5, 305–317.
Piotrowska-Cyplik, A., Olejnik, A., Cyplik, P., Dach, J., & Czarnecki, Z. (2009). The kinetics of nicotine degradation, enzyme activities and genotoxic potential in the characterization of tobacco waste composting. Bioresource Technology, 100, 5037–5044. DOI: 10.1016/j.biortech.2009.05.053.
Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 150, 468–493. DOI: 10.1016/j.jhazmat.2007.09.077.
Slezak, R., Krzystek, L., & Ledakowicz, S. (2012). Mathematical model of aerobic stabilization of old landfills. Chemical Papers, 66, 543–549. DOI: 10.2478/s11696-012-0133-7.
Sponza, D. T. (2001). Toxicity studies in a tobacco industry biological treatment plant. Water, Air, & Soil Pollution, 134, 137–164. DOI: 10.1023/a:1014111616875.
Tsuneda, S., Auresenia, J., Inoue, Y., Hashimoto, Y., & Hirata, A. (2002a). Kinetic model for dynamic response of threephase fluidized bed biofilm reactor for wastewater treatment. Biochemical Engineering Journal, 10, 31–37. DOI: 10.1016/s1369-703x(01)00152-8.
Tsuneda, S., Auresenia, J., Morise, T., & Hirata, A. (2002b). Dynamic modeling and simulation of a three-phase fluidized bed batch process for wastewater treatment. Process Biochemistry, 38, 599–604. DOI: 10.1016/s0032-9592(02)00184-x.
Tyrrel, S. F., Seymour, I., & Harris, J. A. (2008). Bioremediation of leachate from a green waste composting facility using waste-derived filter media. Bioresource Technology, 99, 7657–7664. DOI: 10.1016/j.biortech.2008.01.079.
Veli, S., Öztürk, T., & Dimoglo, A. (2008).Treatment of municipal solid wastes leachate by means of chemical- and electrocoagulation. Separation and Purification Technology, 6, 82–88 DOI: 10.1016/j.seppur.2007.09.026.
Vuković, M., Briški, F., Matošić, M., & Mijatović, I. (2006). Analysis of the activated sludge process in an MBR under starvation conditions. Chemical Engineering & Technology, 29, 357–36 DOI: 10.1002/ceat.200500314.
Wang, S. N., Xu, P., Tang, H. Z., Meng, J., Liu, X. L., Huang, J., Chen, H., Du, Y., & Blankespoor, H. D. (2004). Biodegradation and detoxification of nicotine in tobacco solid waste by a Pseudomonas sp. Biotechnology Letters, 26, 1493–1496. DOI: 10.1023/b:bile.0000044450.16235.65.
Wang, M. Z., Yang, G. Q., Min, H., Lv, Z. M., & Jia, X. Y. (2009). Bioaugmentation with the nicotine-degrading bacterium Pseudomonas sp. HF-1 in a sequencing batch reactor treating tobacco wastewater: Degradation study and analysis of its mechanisms. Water Research, 43, 4187–4196. DOI: 10.1016/j.watres.2009.07.012.
Zhong, W. H., Zhu, C. J., Shu, M., Sun, K. D., Zhao, L., Wang, C., Ye, Z. J., & Chen, J. M. (2010). Degradation of nicotine in tobacco waste extract by newly isolated Pseudomonas sp. ZUTSKD. Bioresource Technology, 101, 6935–6941. DOI: 10.1016/j.biortech.2010.03.142.
Zwietering, M. H., Jongenburger, I., Rombouts, M., & van’t Riet, K. (1990). Modeling of the bacterial growth curve. Applied and Environmental Microbiology, 56, 1875–1881.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ćosić, I., Vuković, M., Gomzi, Z. et al. Modelling of kinetics of microbial degradation of simulated leachate from tobacco dust waste. Chem. Pap. 67, 1138–1145 (2013). https://doi.org/10.2478/s11696-012-0287-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.2478/s11696-012-0287-3
Keywords
- activated sludge
- biodegradation
- kinetic parameters
- leachate
- tobacco waste