Skip to main content

Modelling of kinetics of microbial degradation of simulated leachate from tobacco dust waste

Abstract

This paper presents a kinetic analysis of the biodegradation of organic pollutants in a batch bioreactor and investigates the kinetic properties of activated sludge using different mathematical models. The treatment was conducted for different initial concentrations of leachate from 500 mg dm−3 to 5000 mg dm−3 and initial concentrations of activated sludge from 1.84 g dm−3 to 6.62 g dm−3 over 48 h. Four different kinetic models were applied to the data. The kinetic analysis was performed with the traditional Monod model, the modified Monod model with endogenous metabolism, the Haldane model, and the Haldane model extended to include endogenous metabolic consumption and known as the Endo-Haldane model. Kinetic parameters for each model were determined using differential analysis and the Nelder-Mead method of non-linear regression. The lowest deviations and very good matches with the experimental data were achieved using the Endo-Haldane model. This indicated that this model best described the process of biodegradation of leachate from tobacco waste composting. This is due to this model incorporating the effects both of inhibition and endogenous metabolism.

This is a preview of subscription content, access via your institution.

References

  • Al-Malack, M. H. (2006). Determination of biokinetic coefficients of an immersed membrane bioreactor. Journal of Membrane Science, 271, 47–58. DOI: 10.1016/j.memsci.2005.07.008.

    Article  CAS  Google Scholar 

  • APHA-AWWA-WEF (1999). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC, USA: American Public Health Association.

    Google Scholar 

  • Bae, B. U., Jung, E. S., Kim, Y. R., & Shin, H. S. (1999). Treatment of landfill leachate using activated sludge process and electron-beam radiation. Water Resources, 33, 2669–2673. DOI: 10.1016/s0043-1354(98)00488-6.

    CAS  Google Scholar 

  • Beltran, J., Gonzalez, T., & Garcia, J. (2008). Kinetics of the biodegradation of green table olive wastewaters by aerobic and anaerobic treatments. Journal of Hazardous Materials, 154, 839–845. DOI: 10.1016/j.jhazmat.2007.10.102.

    Article  CAS  Google Scholar 

  • Beltran de Heredia, J., Torregrosa, J., Dominguez, J. R., & Partido, E. (2005). Degradation of wine distillery wastewaters by the combination of aerobic biological treatment with chemical oxidation by Fenton’s reagent. Water Science & Technology, 51(1), 167–174.

    CAS  Google Scholar 

  • Bitton, G. (2005). Wastewater microbiology (3rd ed., pp. 211–259). Hoboken, NJ, USA: Wiley.

    Book  Google Scholar 

  • Briški, F., Kopčić, N., Ćosić, I., Kučić, D., & Vuković, M. (2012). Biodegradation of tobacco waste by composting: Genetic identification of nicotine-degrading bacteria and kinetic analysis of transformations in leachate. Chemical Papers, 66, 166, 1103–1110. DOI: 10.2478/s11696-012-0234-3.

    Article  Google Scholar 

  • Bronstein, I. N., Semendjajev, K. A., Musiol, G., & Mühlig, H. (2004). Mathematical handbook (pp. 764, 794–797). Zagreb, Croatia: Golden Marketing-Tehnička Knjiga. (in Croatian)

    Google Scholar 

  • Casey, T. J. (1997). Unit treatment processes in water and waste engineering. New York, NY, USA: Wiley.

    Google Scholar 

  • Celis, E., Elefsiniotis, P., & Singhal, N. (2008). Biodegradation of agricultural herbicides in sequencing batch reactors under aerobic and anaerobic conditions. Water Research, 42, 3218–3224. DOI: 10.1016/j.watres.2008.04.008.

    Article  CAS  Google Scholar 

  • Derco, J., Černochová, L., Krcho, L., & Lalai, A. (2011). Dynamic simulations of waste water treatment plant operation. Chemical Papers, 65, 813–821, DOI: 10.2478/s11696-011-0076-4.

    Article  CAS  Google Scholar 

  • Dollerer, J., & Wilderer, P. A. (1996). Biological treatment of leachates from hazardous waste landfills using SBBR technology. Water Science and Technology, 34, 437–444. DOI: 10.1016/s0273-1223(96)00776-7.

    Article  CAS  Google Scholar 

  • European Committee for Standardization (2002). European standard: Characterization of waste — Leaching — Compliance test for leaching of granular waste materials and sludges — Part 4: One-stage batch test at a liquid to solids ratio of 10 l/kg for materials with particle size below 10 mm (without or with size reduction). EN 12457-4. Brussels, Belgium.

  • Gnanapragasam, G., Senthilkumar, M., Arutchelvan, V., Velayutham, T., & Nagarajan, S. (2011). Bio-kinetic analysis on treatment of textile dye wastewater using anaerobic batch reactor. Bioresource Technology, 102, 627–632. DOI: 10.1016/j.biortech.2010.08.012.

    Article  CAS  Google Scholar 

  • Holenda, B., Domokos, E., Rédey, A., & Fazakas, J. (2008). Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control. Computers & Chemical Engineering, 32, 1270–1278. DOI: 10.1016/j.compchemeng.2007.06.008.

    Article  CAS  Google Scholar 

  • Huang, X., Gui, P., & Qian, Y. (2001). Effect of sludge retention time on microbial behaviour in a submerged membrane bioreactor. Process Biochemistry, 36, 1001–1006. DOI: 10.1016/s0032-9592(01)00135-2.

    Article  CAS  Google Scholar 

  • Mardani, Sh., Mirbagheri, A., Amin., M. M., & Ghasemian, M. (2011). Determination of biokinetic coefficients for activated sludge processes on municipal wastewater. Iranian Journal of Environmental Health Science & Engineering, 8(1), 25–34.

    CAS  Google Scholar 

  • Mendenhall, W. (1964). Introduction to statistics (pp. 37–38, 160–165). Belmont, CA, USA: Wadsworth Publishing Company.

    Google Scholar 

  • Nuhoglu, A., & Yalcin, B. (2005). Modelling of phenol removal in a batch reactor. Process Biochemistry, 40, 1233–1239. DOI: 10.1016/j.procbio.2004.04.003.

    Article  CAS  Google Scholar 

  • Okpokwasili, G. C., & Nweke, C. O. (2005). Microbial growth and substrate utilization kinetics. African Journal of Biotechnology, 5, 305–317.

    Google Scholar 

  • Piotrowska-Cyplik, A., Olejnik, A., Cyplik, P., Dach, J., & Czarnecki, Z. (2009). The kinetics of nicotine degradation, enzyme activities and genotoxic potential in the characterization of tobacco waste composting. Bioresource Technology, 100, 5037–5044. DOI: 10.1016/j.biortech.2009.05.053.

    Article  CAS  Google Scholar 

  • Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 150, 468–493. DOI: 10.1016/j.jhazmat.2007.09.077.

    Article  CAS  Google Scholar 

  • Slezak, R., Krzystek, L., & Ledakowicz, S. (2012). Mathematical model of aerobic stabilization of old landfills. Chemical Papers, 66, 543–549. DOI: 10.2478/s11696-012-0133-7.

    Article  CAS  Google Scholar 

  • Sponza, D. T. (2001). Toxicity studies in a tobacco industry biological treatment plant. Water, Air, & Soil Pollution, 134, 137–164. DOI: 10.1023/a:1014111616875.

    Article  Google Scholar 

  • Tsuneda, S., Auresenia, J., Inoue, Y., Hashimoto, Y., & Hirata, A. (2002a). Kinetic model for dynamic response of threephase fluidized bed biofilm reactor for wastewater treatment. Biochemical Engineering Journal, 10, 31–37. DOI: 10.1016/s1369-703x(01)00152-8.

    Article  CAS  Google Scholar 

  • Tsuneda, S., Auresenia, J., Morise, T., & Hirata, A. (2002b). Dynamic modeling and simulation of a three-phase fluidized bed batch process for wastewater treatment. Process Biochemistry, 38, 599–604. DOI: 10.1016/s0032-9592(02)00184-x.

    Article  CAS  Google Scholar 

  • Tyrrel, S. F., Seymour, I., & Harris, J. A. (2008). Bioremediation of leachate from a green waste composting facility using waste-derived filter media. Bioresource Technology, 99, 7657–7664. DOI: 10.1016/j.biortech.2008.01.079.

    Article  CAS  Google Scholar 

  • Veli, S., Öztürk, T., & Dimoglo, A. (2008).Treatment of municipal solid wastes leachate by means of chemical- and electrocoagulation. Separation and Purification Technology, 6, 82–88 DOI: 10.1016/j.seppur.2007.09.026.

    Article  Google Scholar 

  • Vuković, M., Briški, F., Matošić, M., & Mijatović, I. (2006). Analysis of the activated sludge process in an MBR under starvation conditions. Chemical Engineering & Technology, 29, 357–36 DOI: 10.1002/ceat.200500314.

    Article  Google Scholar 

  • Wang, S. N., Xu, P., Tang, H. Z., Meng, J., Liu, X. L., Huang, J., Chen, H., Du, Y., & Blankespoor, H. D. (2004). Biodegradation and detoxification of nicotine in tobacco solid waste by a Pseudomonas sp. Biotechnology Letters, 26, 1493–1496. DOI: 10.1023/b:bile.0000044450.16235.65.

    Article  CAS  Google Scholar 

  • Wang, M. Z., Yang, G. Q., Min, H., Lv, Z. M., & Jia, X. Y. (2009). Bioaugmentation with the nicotine-degrading bacterium Pseudomonas sp. HF-1 in a sequencing batch reactor treating tobacco wastewater: Degradation study and analysis of its mechanisms. Water Research, 43, 4187–4196. DOI: 10.1016/j.watres.2009.07.012.

    Article  CAS  Google Scholar 

  • Zhong, W. H., Zhu, C. J., Shu, M., Sun, K. D., Zhao, L., Wang, C., Ye, Z. J., & Chen, J. M. (2010). Degradation of nicotine in tobacco waste extract by newly isolated Pseudomonas sp. ZUTSKD. Bioresource Technology, 101, 6935–6941. DOI: 10.1016/j.biortech.2010.03.142.

    Article  CAS  Google Scholar 

  • Zwietering, M. H., Jongenburger, I., Rombouts, M., & van’t Riet, K. (1990). Modeling of the bacterial growth curve. Applied and Environmental Microbiology, 56, 1875–1881.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Ćosić.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ćosić, I., Vuković, M., Gomzi, Z. et al. Modelling of kinetics of microbial degradation of simulated leachate from tobacco dust waste. Chem. Pap. 67, 1138–1145 (2013). https://doi.org/10.2478/s11696-012-0287-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0287-3

Keywords

  • activated sludge
  • biodegradation
  • kinetic parameters
  • leachate
  • tobacco waste