Skip to main content
Log in

Dynamic shape and wall correction factors of cylindrical particles falling vertically in a Newtonian liquid

  • Short Communication
  • Published:
Chemical Papers Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Results of numerical calculations of dynamic shape and wall correction factors for the flow of a Newtonian fluid over a vertically oriented cylindrical particle in a cylindrical tube are reported. Mathematical model of the flow was solved using the finite element method by means of the COMSOL Multiphysics software. Dependences of the shape factor on the cylinder aspect ratio and of the wall correction factor, F W , on the ratio of the cylindrical particle diameter to the tube diameter, and on the aspect ratio were obtained. Numerical dependences were approximated by simple relationships suitable for dynamic shape and wall correction factors prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Chhabra, R. P. (1995). Wall effects on free-settling velocity of non-spherical particles in viscous media in cylindrical tubes. Powder Technology, 85, 83–90. DOI: 10.1016/0032-5910(95)03012-x.

    Article  CAS  Google Scholar 

  • Chhabra, R. P., Rami, K., & Uhlherr, P. H. T. (2001). Drag on cylinders in shear thinning viscoelastic liquids. Chemical Engineering Science, 56, 2221–2227. DOI: 10.1016/s0009-2509(00)00507-8.

    Article  CAS  Google Scholar 

  • Happel, J., & Brenner, H. (1965). Low Reynolds number hydrodynamics. Englewoods Cliffs, NJ, USA: Prentice-Hall.

    Google Scholar 

  • Heiss, J. F., & Coull, J. (1952). The effect of orientation and shape on the settling velocity of non-isometric particles in viscous medium. Chemical Engineering Progress, 48, 133–140.

    CAS  Google Scholar 

  • Hölzer, A., & Sommerfeld, M. (2008). New simple correlation formula for the drag coefficient of non-spherical particles. Powder Technology, 184, 361–365. DOI: 10.1016/j.powtec.2007.08.021.

    Article  Google Scholar 

  • Lecjaks, Z., & Pilař, A. (1967). Dynamika tuhých částic v tekutině — I. Volný pád válcových částic v nepostupující kapalině ve Stokesovském oboru. Chemický Průmysl, 17(42), 634–639.

    Google Scholar 

  • Munshi, B., Chhabra, R. P., & Ghoshdastidar, P. S. (1999). A numerical study of steady incompressible Newtonian fluid flow over a disk at moderate Reynolds numbers. The Canadian Journal of Chemical Engineering, 77, 113–118. DOI: 10.1002/cjce. 5450770118.

    Article  CAS  Google Scholar 

  • Nitin, S., & Chhabra, R. P. (2005). Wall effects in two-dimensional axisymmetric flow over a circular disk oriented normal to flow in a cylindrical tube. The Canadian Journal of Chemical Engineering, 83, 450–457. DOI: 10.1002/cjce.5450830307.

    Article  CAS  Google Scholar 

  • Sabiri, N. E., Machač, I., & Lecjaks, Z. (1997). Pádová rychlost nekulových částic v nenew-tonských kapalinách. In Zborník 24. konferencie SSCHI, June 15–19, 1997 (pp. 233–236). Častá-Papiernička, Slovakia: Slovak Society of Chemical Engineering.

    Google Scholar 

  • Strnadel, J., (2012). Pád tuhé osamocené částice v nenewtonských kapalinách. Ph.D. thesis, University of Pardubice, Pardubice, Czech Republic.

    Google Scholar 

  • Strnadel, J., & Machač, I. (2009). Wall effects on a single spherical particle moving through a Carreau model fluid. Scientific Papers of the University Pardubice Series A, 15, 175–185.

    CAS  Google Scholar 

  • Strnadel, J., Simon, M., & Machač, I. (2011). Wall effects on terminal velocity of spherical particles moving in a Carreu model fluid. Chemical Papers, 65, 177–184. DOI: 10.2478/s11696-011-0005-6.

    Article  CAS  Google Scholar 

  • Ui, T. J., Hussey, R. G., & Roger, R. P. (1984). Stokes drag on a cylinder in axial motion. Physics of Fluids, 27, 787–795. DOI: 10.1063/1.864706.

    Article  CAS  Google Scholar 

  • Zimmerman, W. B. (2002). The drag on sedimenting discs in broadside motion in tubes. International Journal of Engineering Science, 40, 7–22. DOI: 10.1016/s0020-7225(01)00054-4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Machač.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strnadel, J., Šiška, B. & Machač, I. Dynamic shape and wall correction factors of cylindrical particles falling vertically in a Newtonian liquid. Chem. Pap. 67, 1245–1249 (2013). https://doi.org/10.2478/s11696-012-0285-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0285-5

Keywords

Navigation