Skip to main content

Micelle nano-reactors as mediators of water-insoluble ligand complexation with Cu(II) ions in aqueous medium

Abstract

Complexation reactions between water-soluble and -insoluble reactants were shown to occur in aqueous media in the presence of normal or reverse surfactant micelles, in significantly higher yields at lower temperatures compared to those achieved in neat organic solvents. The highest yield enhancement in the complexation of novel water-insoluble bis(2-amino-1,3,4-thiadiazolyl)methane and 1,4-bis(2-amino-1,3,4-thiadiazolyl)benzene ligands with Cu(II) ions was achieved in the sodium bis(2-ethylhexyl)sulfosuccinate (AOT)-heptane-water reverse micellar system at the hydration ratio of 15. The results revealed that AOT normal micelles cause a change in the reaction mechanism together with the enhancement of the complex formation. The observed micellar effects were rationalized on basis of the properties of bulk solvents, surfactants and ligands, considering the solvation and hydration ratios of reverse micelles. The results have proved the dependence of complex yield on the amount and accordingly also on the properties of water in the micellar core, indicating that the yield can be maximized by the optimization of the hydration ratio.

This is a preview of subscription content, access via your institution.

References

  1. Adıgüzel, R., Ergin, Z., Şekerci, M., & Taşcıoğlu, S. (2011a). Synthesis and structural characterization of bis(2-amino-1,3,4-thiadiazolyl)methane complexes. Journal of the Chemical Society of Pakistan, 33, 238–244.

    Google Scholar 

  2. Adıgüzel, R., Şekerci, M., Taşcıoğlu, S., & Ergin, Z. (2011b). Synthesis and structural characterization of novel new Co (II) complexes of heteroatom bearing ligands. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2, 256–267.

    Google Scholar 

  3. Atalay, Y., Yakuphanoglu, F., Şekerci, M., Avcı, D., & Başoğlu, A. (2006). Theoretical studies of molecular structure and vibrational spectra of 2-amino-5-phenyl-1,3,4-thiadiazole. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 64, 68–72. DOI: 10.1016/j.saa.2005.06.038.

    Article  CAS  Google Scholar 

  4. Bianchini, G., Cavarzan, A., Scarso, A., & Strukul, G. (2009). Asymmetric Baeyer-Villiger oxidation with Co(Salen) and H2O2 in water: striking supramolecular micelles effect on catalysis. Green Chemistry, 11, 1517–1520. DOI: 10.1039/b916262n.

    Article  CAS  Google Scholar 

  5. Biswas, R., Rohman, N., Pradhan, T., & Buchner, R. (2008). Intramolecular charge transfer reaction, polarity, and dielectric relaxation in AOT/water/heptane reverse micelles: Pool size dependence. The Journal of Physical Chemistry B, 112, 9379–9388. DOI: 10.1021/jp8023149.

    Article  CAS  Google Scholar 

  6. Christopher, D. J., Yarwood, J., Belton, P. S., & Hills, B. P. (1992). A Fourier transform infrared study of water-head group interactions in reversed micelles containing sodium bis(2-ethylhexyl)sulfosuccinate (AOT). Journal of Colloid and Interface Science, 152, 465–472. DOI: 10.1016/0021-9797(92)90047-p.

    Article  CAS  Google Scholar 

  7. Das, D., Nath, D. N., Parui, P. P., & Chowdhury, M. (2006). Magnetic field effect on pyrene-DMA exciples luminescence in non-aqueous AOT reverse micelle. Chemical Physics Letters, 424, 300–306. DOI: 10.1016/j.cplett.2006.04.076.

    Article  CAS  Google Scholar 

  8. Destrée, C., George, S., Champagne, B., Guillaume, M., Ghijsen, J., & Nagy, J. B. (2008). J-complexes of retinol formed within the nanoparticles prepared from microemulsions. Colloid & Polymer Science, 286, 15–30. DOI: 10.1007/s00396-007-1679-8.

    Article  Google Scholar 

  9. Gonçalves, S. A. P., De Pauli, S. H., Tedesco, A. C., Quina, F. H., Okano, L. T., Bonilha, J. B. S. (2003). Counterion exchange selectivity coefficients at water-in-oil microemulsion interface. Journal of Colloid and Interface Science, 267, 494–499. DOI: 10.1016/s0021-9797(03)00752-5.

    Article  Google Scholar 

  10. Görgülü, A. O., & Çukurovalı, A. (2002). Synthesis and characterization of two 2-amino-5-alkyl-1,3,4-thiadiazolyl carbamate ligands and their Co(II), Ni(II), and Zn(II) complexes. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 32, 1033–1042. DOI: 10.1081/SIM-120005620.

    Article  Google Scholar 

  11. Huang, S., Voigtritter, K. R., Unger, J. B., & Lipshutz, B. H. (2010). Asymmetric CuH-catalyzed 1,4-reductions in water at room temperature. Synlett, 13, 2041–2044. DOI: 10.1055/s-0030-1258540.

    Google Scholar 

  12. Kim, H. U., & Lim, K. H. (2004). A model on the temperature dependence of critical micelle concentration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 235, 121–128. DOI: 10.1016/j.colsurfa.2003.12.019.

    Article  CAS  Google Scholar 

  13. Koparır, M., Cansız, A., & Cn, A. (2005). Synthesis and spectral investigations of 2,5,7-triaryl-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidin-6[7H]-ones. Asian Journal of Chemistry, 17, 1689–1697.

    Google Scholar 

  14. Li, Q., Weng, S., Wu, J., & Zhou, N. (1998). Comparative study on structure of solubilized water in reversed micelles. 1. FT-IR spectroscopic evidence of water/AOT/n-heptane and water/NaDEHP/n-heptane systems. The Journal of Physical Chemistry B, 102, 3168–3174. DOI: 10.1021/jp972254l.

    Article  CAS  Google Scholar 

  15. Lv, R., Cao, C., & Zhu, H. (2004). Synthesis and characterization of ZnS nanowires by AOT micelle-template inducing reaction. Materials Research Bulletin, 39, 1517–1524. DOI: 10.1016/j.materresbull.2004.04.019.

    Article  Google Scholar 

  16. Maradiya, H. R., & Patel, V. S. (2002). Thiadiazole-based monomeric and polymeric dyes for cellulose triacetate fiber. International Journal of Polymer Analysis and Characterization, 7, 314–330. DOI: 10.1080/10236660290026520.

    Article  CAS  Google Scholar 

  17. Mohamed, G. G., & Sharaby, C. M. (2007). Metal complexes of Schiff base derived from sulphametrole and o-vanilin. Synthesis, spectral, thermal characterization and biological activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 66, 949–958. DOI: 10.1016/j.saa.2006.04.033.

    Article  Google Scholar 

  18. Moulik, S. P., & Paul, B. K. (1998). Structure dynamics and transport properties of microemulsions. Advances in Colloid and Interface Science, 78, 99–195. DOI: 10.1016/s0001-8686(98)00063-3.

    Article  CAS  Google Scholar 

  19. Noudeh, G. D., Housaindokht, M., & Bazzaz, B. S. F. (2007). The effect of temperature on thermodynamic parameters of micellization of some surfactants. Journal of Applied Sciences, 7, 47–52. DOI: 10.3923/jas.2007.47.52.

    Article  CAS  Google Scholar 

  20. Olmstead, E. G., Harman, S. W., Choo, P. L., & Crumbliss, A. L. (2001). Use of SDS micelles to stabilize a ternary intermediate in the reaction ferrioxamine B and 1,10-phenantroline. Inorganic Chemistry, 40, 5420–5427. DOI: 10.1021/ic0008621.

    Article  CAS  Google Scholar 

  21. Parui, P. P., Nath, D. N., & Chowdhury, M. (2004). Determination of interfacial dielectric constant of AOT-based reverse micelle by probing magnetic field effect on pyrene-DMA exciplex luminescence. Chemical Physics Letters, 396, 329–334. DOI: 10.1016/j.cplett.2004.08.052.

    Article  Google Scholar 

  22. Parui, P. P., Nath, D. N., & Chowdhury, M. (2005). Magnetic field effect on exciplex luminescence: A study of multiple exciplex formation dynamics in biomimicking environment. Chemical Physics Letters, 404, 79–84. DOI: 10.1016/j.cplett.2005.01.069.

    Article  CAS  Google Scholar 

  23. Paula, S., Sues, W., Tuchtenhagen, J., & Blume, A. (1995). Thermodynamics of micelle formation as a function of temperature: A high sensitivity titration calorimetry study. The Journal of Physical Chemistry, 99, 11742–11751. DOI: 10.1021/j100030a019.

    Article  CAS  Google Scholar 

  24. Rao, P. S., Srikanth, B., Rao, V. S. S., Sastry, C. K., & Rao, G. N. (2009). Protonation equilibria of L-aspartic, citric and succinic acids in anionic micellar media. E-Journal of Chemistry, 6, 561–568. DOI: 10.1155/2009/705976.

    Article  CAS  Google Scholar 

  25. Riter, R. E., Kimmel, J. R., Undiks, E. P., & Levinger, N. E. (1997). Novel reverse micelles partitioning nonaqueous polar solvents in a hydrocarbon continuous phase. The Journal of Physical Chemistry B, 101, 8292–8297. DOI: 10.1021/jp971732p.

    Article  CAS  Google Scholar 

  26. Samant, B. S., & Bhagwat, S. S. (2011). Enantioselective cycloetherification in a micellar catalysis system. Chinese Journal of Catalysis, 32, 231–234. DOI: 10.1016/s1872-2067(10)60169-6.

    Article  CAS  Google Scholar 

  27. Shirota, H., & Segawa, H. (2004). Solvation dynamics of formamide and N,N-dimethylformamide in aerosol OT reverse micelles. Langmuir, 20, 329–335. DOI: 10.1021/la030161r.

    Article  CAS  Google Scholar 

  28. Silber, J. J., Biasutti, A., Abuin, E., & Lissi, E. (1999). Interactions of small molecules with reverse micelles. Advances in Colloid and Interface Science, 82, 189–252. DOI: 10.1016/s0001-8686(99)00018-4.

    Article  CAS  Google Scholar 

  29. Silber, J. J., Falcone, R. D., Correa, N. M., Biasutti, M. A., Abuin, E., Lissi, E., & Campodonico, P. (2003). Exploratory study of the effect of polar solvents upon the partitioning of solutes in nonaqueous reverse micellar solutions. Langmuir, 19, 2067–2071. DOI: 10.1021/la026484p.

    Article  CAS  Google Scholar 

  30. Taşcıoğlu, S. (1996). Micellar solutions as reaction media. Tetrahedron, 52, 11113–11152. DOI: 10.1016/0040-4020(96)00669-2.

    Article  Google Scholar 

  31. Taşcıoğlu, S., & Gürdere, M. B. (2000). Elucidation of the mechanism of an aromatic substitution reaction by the utilization of micelles as mechanistic probes. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 173, 101–107. DOI: 10.1016/s0927-7757(00)00575-6.

    Article  Google Scholar 

  32. Terzioğlu, N., & Gürsoy, A. (2003). Synthesis and anticancer evaluation of some new hydrazone derivatives of 2,6-dimethylimidazo[2,1-b][1,3,4]thiadiazole-5-carbohydrazide. European Journal of Medicinal Chemistry, 38, 781–786. DOI: 10.1016/s0223-5234(03)00138-7.

    Article  Google Scholar 

  33. Tošić, M. S., Vasić, V. M., Nedeljković, J. M., & Ilić, L. A. (1997). Influence of sodium dodecyl sulfate micelles on the kinetics of complex formation between Pd(H2O) 2+4 and glutathione. Polyhedron, 16, 1157–1160. DOI: 10.1016/s0277-5387(96)00373-7.

    Article  Google Scholar 

  34. Wangsakan, A., Chinachoti, P., & McClements, D. J. (2006). Isothermal titration calorimetry study of the influence of temperature, pH and salt on maltodextrin-anionic surfactant interactions. Food Hydrocolloids, 20, 461–467. DOI: 10.1016/j.foodhyd.2005.03.008.

    Article  CAS  Google Scholar 

  35. Zingaretti, L., Correa, N. M., Boscatto, L., Chiacchiera, S. M., Durantini, E. N., Bertolotti, S. G., Rivarola, C. R., & Silber, J. J. (2005). Distribution of amines in water/AOT/n-hexane reverse micelles: influence of the amine chemical structure. Journal of Colloid and Interface Science, 286, 245–252. DOI: 10.1016/j.jcis.2004.12.057.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Senay Taşcıoğlu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Adıgüzel, R., Taşcıoğlu, S. Micelle nano-reactors as mediators of water-insoluble ligand complexation with Cu(II) ions in aqueous medium. Chem. Pap. 67, 456–463 (2013). https://doi.org/10.2478/s11696-012-0283-7

Download citation

Keywords

  • micellar effects
  • Cu(II) complex
  • bis(2-amino-1,3,4-thiadiazolyl)methane
  • 1,4-bis(2-amino-1,3,4-thiadiazolyl)benzene
  • SDS
  • AOT