Skip to main content

Molybdate sulfonic acid: preparation, characterization, and application as an effective and reusable catalyst for octahydroxanthene-1,8-dione synthesis

Abstract

Molybdate sulfonic acid (MSA) as a highly efficient catalyst was synthesized and employed for the synthesis of octahydroxanthene-1,8-dione derivatives. MSA efficiently catalyzed condensation of a wide range of aryl aldehydes and cyclohexane-1,3-diones to obtain octahydroxanthene-1,8-diones. It was characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), and FT-IR spectroscopy. This catalyst can be recovered and reused several times in other reactions maintaining its high activity. This novel and green method is very cheap and has many advantages such as excellent yields, the use of recoverable and eco-friendly catalysts, and a simple work-up procedure.

This is a preview of subscription content, access via your institution.

References

  1. Ahmad, M., King, T. A., Ko, D. K., Cha, B. H., & Lee, J. (2002). Performance and photostability of xanthene and pyrromethene laser dyes in sol-gel phases. Journal of Physics D: Applied Physics, 35, 1473–1476. DOI: 10.1088/0022-3727/35/13/303.

    Article  CAS  Google Scholar 

  2. Bekaert, A., Andrieux, J., & Plat, M. (1992). New total synthesis of bikaverin. Tetrahedron Letters, 33, 2805–2806. DOI: 10.1016/s0040-4039(00)78863-0.

    Article  CAS  Google Scholar 

  3. Beletskaya, I., & Tyurin, V. (2010). Recyclable nanostructured catalytic systems in modern environmentally friendly organic synthesis. Molecules, 15, 4792–4814. DOI: 10.3390/molecules 15074792.

    Article  CAS  Google Scholar 

  4. Bhowmik, B. B., & Ganguly, P. (2005). Photophysics of xanthene dyes in surfactant solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61, 1997–2003. DOI: 10.1016/j.saa.2004.07.031.

    Article  Google Scholar 

  5. Bin, L. L., Shou, J. T., Sha, H. L., Meng, L., Na, Q., & Shuang, L. T. (2006). The reaction of aromatic aldehydes and 1,3-cyclohexanedione in aqueous media. E-Journal of Chemistry, 3, 117–121.

    Article  Google Scholar 

  6. Casiraghi, G., Casnati, G., & Cornia, M. (1973). Regiospecific reactions of phenol salts: reaction-pathways of alkylphenoxy-magnesiumhalides with triethylorthoformate. Tetrahedron Letters, 14, 679–682. DOI: 10.1016/s0040-4039(00)72432-4.

    Article  Google Scholar 

  7. Chen, B. H., Fan, Y. S., Ma, Y. X., Li, P. R., & Liu, W. M. (2002). Lewis acids-catalyzed nucleophilic addition of allylstannane to aroylhydrazone. Chemical Papers, 56, 247–249.

    CAS  Google Scholar 

  8. Chibale, K., Visser, M., van Schalkwyk, D., Smith, P. J., Saravanamuthu, A., & Fairlamb, A. H. (2003). Exploring the potential of xanthene derivatives as trypanothione reductase inhibitors and chloroquine potentiating agents. Tetrahedron, 59, 2289–2296. DOI: 10.1016/s0040-4020(03)00240-0.

    Article  CAS  Google Scholar 

  9. Clark, J. H. (2002). Solid acids for green chemistry. Accounts of Chemical Research, 35, 791–797. DOI: 10.1021/ar010072a.

    Article  CAS  Google Scholar 

  10. Clark, J. H., & Macquarrie, D. J. (1996). Environmentally friendly catalytic methods. Chemical Society Reviews, 25, 303–310. DOI: 10.1039/cs9962500303.

    Article  CAS  Google Scholar 

  11. Das, B., Thirupathi, P., Mahender, I., Reddy, V. S., & Rao, Y. K. (2006). Amberlyst-15: An efficient reusable heterogeneous catalyst for the synthesis of 1,8-dioxo-octahydroxanthenes and 1,8-dioxo-decahydroacridines. Journal of Molecular Catalysis A: Chemical, 247, 233–239. DOI: 10.1016/j.molcata.2005.11.048.

    Article  CAS  Google Scholar 

  12. El-Brashy, A. M., Metwally, M. E. S., & El-Sepai, F. A. (2004). Spectrophotometric determination of some fluoroquinolone antibacterials by binary complex formation with xanthene dyes. Il Farmaco, 59, 809–817. DOI: 10.1016/j.farmac.2004.07.001.

    Article  CAS  Google Scholar 

  13. Ding, Y., Hou, N., Chen, N., & Xia, Y. (2006). Phase diagrams of Li2MoO4-Na2MoO4 and Na2MoO4-K2MoO4 systems. Rare Metals, 25, 316–320. DOI: 10.1016/s1001-0521(06)60060-0.

    Article  CAS  Google Scholar 

  14. Fan, X., Hu, X., Zhang, X., & Wang, J. (2005). InCl3 ·4H2Opromoted green preparation of xanthenedione derivatives in ionic liquids. Canadian Journal of Chemistry, 83, 16–20. DOI: 10.1139/v04-155.

    Article  CAS  Google Scholar 

  15. Horning, E. C., & Horning, M. G. (1946). Methone derivatives of aldehydes. Journal of Organic Chemistry, 11, 95–99. DOI: 10.1021/jo01171a014.

    Article  CAS  Google Scholar 

  16. Ion, R. M., Planner, A., Wiktorowicz, K., & Frackowiak, D. (1998). The incorporation of various porphyrins into blood cells measured via flow cytometry, absorption and emission spectroscopy. Acta Biochimica Polonica, 45, 833–845.

    CAS  Google Scholar 

  17. Jha, A., & Beal, J. (2004). Convenient synthesis of 12H-benzo[a]xanthenes from 2-tetralone. Tetrahedron Letters, 45, 8999–9001. DOI:10.1016/j.tetlet.2004.10.046.

    Article  CAS  Google Scholar 

  18. Jin, T. S., Zhang, J. S., Wang, A. Q., & Li, T. S. (2006). Ultrasound-assisted synthesis of 1,8-dioxo-octahydroxanthene derivatives catalyzed by p-dodecylbenzenesulfonic acid in aqueous media. Ultrasonics Sonochemistry, 13, 220–224. DOI: 10.1016/j.ultsonch.2005.04.002.

    Article  CAS  Google Scholar 

  19. John, A., Yadav, P. J. P., & Palaniappan, S. (2006). Clean synthesis of 1,8-dioxo-dodecahydroxanthene derivatives catalyzed by polyaniline-p-toluenesulfonate salt in aqueous media. Journal of Molecular Catalysis A: Chemical, 248, 121–125. DOI: 10.1016/j.molcata.2005.12.017.

    Article  CAS  Google Scholar 

  20. Kafuku, G., Lee, K. T., & Mbarawa, M. (2010). The use of sulfated tin oxide as solid superacid catalyst for heterogeneous transesterification of Jatropha curcas oil. Chemical Papers, 64, 734–740. DOI: 10.2478/s11696-010-0063-1.

    Article  CAS  Google Scholar 

  21. Kantevari, S., Bantu, R., & Nagarapu, L. (2006). TMSCl mediated highly efficient one-pot synthesis of octahydroquinazolinone and 1,8-dioxo-octahydroxanthene derivatives. Arkivoc, 2006(xvi), 136–148.

    Google Scholar 

  22. Kantevari, S., Bantu, R., & Nagarapu, L. (2007). HClO4-SiO2 and PPA-SiO2 catalyzed efficient one-pot Knoevenagel condensation, Michael addition and cyclo-dehydration of dimedone and aldehydes in acetonitrile, aqueous and solvent free conditions: Scope and limitations. Journal of Molecular Catalysis A: Chemical, 269, 53–57. DOI: 10.1016/j.molcata.2006.12.039.

    Article  CAS  Google Scholar 

  23. Karade, H. N., Sathe, M., & Kaushik, M. P. (2007). An efficient synthesis of 1,8-dioxo-octahydroxanthenes using tetrabutylammonium hydrogen sulfate. Arkivoc, 2007(xiii), 252–258.

    Google Scholar 

  24. Karami, B., & Kiani, M. (2011). ZrOCl2·8H2O/SiO2: An efficient and recyclable catalyst for the preparation of coumarin derivatives by Pechmann condensation reaction. Catalysis Communications, 14, 62–67. DOI: 10.1016/j.catcom.2011.07.002.

    Article  CAS  Google Scholar 

  25. Karami, B., Eskandari, K., Farahi, M., & Barmas, A. (2012a). An effective and new method for the synthesis of polysubstituted imidazoles by the use of CrCl3.6H2O as a green and reusable catalyst: synthasis of some novel imidazole derivatives. Journal of the Chinese Chemical Society, 59, 473–479. DOI: 10.1002/jccs.201100555.

    Article  CAS  Google Scholar 

  26. Karami, B., Ghashghaee, V., & Khodabakhshi, S. (2012b). Novel silica tungstic acid (STA): Preparation, characterization and its first catalytic application in synthesis of new benzimidazoles. Catalysis Communications, 20, 71–75. DOI: 10.1016/j.catcom.2012.01.012.

    Article  CAS  Google Scholar 

  27. Karami, B., Khodabakhshi, S., & Haghighijou, Z. (2012c). Tungstate sulfuric acid: preparation, characterization, and application in catalytic synthesis of novel benzimidazoles. Chemical Papers, 66, 684–690. DOI: 10.2478/s11696-012-0152-4.

    Article  CAS  Google Scholar 

  28. Kidwai, M., & Bhatnagar, D. (2010). Polyethylene glycolmediated synthesis of decahydroacridine-1,8-diones catalyzed by ceric ammonium nitrate. Chemical Papers, 64, 825–828. DOI: 10.2478/s11696-010-0070-2.

    Article  CAS  Google Scholar 

  29. Kinjo, J., Uemura, H., Nohara, T., Yamashita, M., Marubayashi, N., & Yoshihira, K. (1995). Novel yellow pigment from Pterocarpus santalinus: Biogenetic hypothesis for santalin analogs. Tetrahedron Letters, 36, 5599–5602. DOI: 10.1016/0040-4039(95)01071-o.

    CAS  Google Scholar 

  30. Knight, C. G., & Stephens, T. (1989). Xanthene-dye-labelled phosphatidylethanolamines as probes of interfacial pH. Studies in phospholipid vesicles. Biochemical Journal, 258, 683–687.

    CAS  Google Scholar 

  31. Knight, D. W., & Little, P. B. (2001). The first efficient method for the intramolecular trapping of benzynes by phenols: a new approach to xanthenes. Journal of the Chemical Society, Perkin Transactions 1, 2001, 1771–1777. DOI:10.1039/b103834f.

    Article  Google Scholar 

  32. Kuo, C. W., & Fang, J. M. (2001). Synthesis of xanthenes, indanes, and tetrahydronaphthalenes via intramolecular phenyl-carbonyl coupling reactions. Synthetic Communications, 31, 877–892. DOI: 10.1081/scc-100103323.

    Article  CAS  Google Scholar 

  33. Martins, M. A. P., Teixeira, M. V. M., Cunico, W., Scapin, E., Mayer, R., Pereira, C. M. P., Zanatta, N., Bonacorso, H. G., Peppe, C., & Yuan, Y. F. (2004). Indium(III) bromide catalyzed one-pot synthesis of trichloromethylated tetrahydropyrimidinones. Tetrahedron Letters, 45, 8991–8994. DOI: 10.1016/j.tetlet.2004.10.048.

    Article  CAS  Google Scholar 

  34. Martins, M. A. P., Peres, R. L., Frizzo, C. P., Scapin, E., Moreira, D. N., Fiss, G. F., Zanatta, N., & Bonacorso, H. G. (2009). Solvent-free route to β-enamino dichloromethyl ketones and application in the synthesis of novel 5-dichloromethyl-1H-pyrazoles. Journal of Heterocyclic Chemistry, 46, 1247–1251. DOI: 10.1002/jhet.227.

    Article  CAS  Google Scholar 

  35. Movassaghi, M., & Jacobsen, E. N. (2002). A direct method for the conversion of terminal epoxides into γ-butanolides. Journal of the American Chemical Society, 124, 2456–2457. DOI: 10.1021/ja025604c.

    Article  CAS  Google Scholar 

  36. Olah, G. A., Molhotra, R., & Narang, S. C. (1978). Aromatic substitution. 43. Perfluorinated resinsulfonic acid catalyzed nitration of aromatics. The Journal of Organic Chemistry, 43, 4628–4630. DOI: 10.1021/jo00418a019.

    Article  CAS  Google Scholar 

  37. Poor Heravi, M. R. (2009). Selectfluor™ promoted synthesis of 9-aryl-1,8-dioxooctahydroxanthane derivatives under solvent-free conditions. Journal of the Iranian Chemical Society, 6, 483–488.

    Article  Google Scholar 

  38. Prakash, G. K. S., Mathew, T., Mandal, M., Farnia, M., & Olah, G. A. (2004). Aroylation of aromatics with aryl carboxylic acids over Nafion-H (polymeric perfluoroalkanesulfonic acid), an environmentally friendly solid acid catalyst. Arkivoc, 2004(viii), 103–110.

    Google Scholar 

  39. Qi, X., Rice, G. T., Lall, M. S., Plummer, M. S., & White, M. C. (2010). Diversification of a β-lactam pharmacophore via allylic C-H amination: accelerating effect of Lewis acid co-catalyst. Tetrahedron, 66, 4816–4826. DOI: 10.1016/j.tet.2010.04.064.

    Article  CAS  Google Scholar 

  40. Saint-Ruf, G., Hieu, H. T., & Poupelin, J. P. (1975). The effect of dibenzoxanthenes on the paralyzing action of zoxazolamine. Naturwissenschaften, 62, 584–585. DOI: 10.1007/ bf01166986.

    Article  CAS  Google Scholar 

  41. Seyyedhamzeh, M., Mirzaei, P., & Bazgir, A. (2008). Solventfree synthesis of aryl-14H-dibenzo[a,j]xanthenes and 1,8-dioxo-octahydro-xanthenes using silica sulfuric acid as catalyst. Dyes and Pigments, 76, 836–839. DOI: 10.1016/j.dyepig.2007.02.001.

    Article  CAS  Google Scholar 

  42. Stone, M. T., & Anderson, H. L. (2007). A cyclodextrininsulated anthracene rotaxane with enhanced fluorescence and photostability. Chemical Communications, 2007, 2387–2389. DOI: 10.1039/b700868f.

    Article  Google Scholar 

  43. Tavakoli, H. R., Zamani, H., Ghorbani, M. H., & Etedali Habibabadi, H. (2009). Solvent-free synthesis of 14-aryl(alkyl)-14H-dibenzo[a,j]xanthene, 9-aryl(alkyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-2H-xanthene-1,8-dione and 2-amino-5,6,7,8-tetrahydro-5-oxo-4-aryl-7,7-dimethyl-4Hbenzo-[ b]-pyran derivatives using InCl3 as catalyst. Iranian Journal of Organic Chemistry, 2, 118–126.

    Google Scholar 

  44. Venkatesan, K., Pujari, S. S., Lahoti, R. J., & Srinivasan, K. V. (2008). An efficient synthesis of 1,8-dioxo-octahydroxanthene derivatives promoted by a room temperature ionic liquid at ambient conditions under ultrasound irradiation. Ultrasonics Sonochemistry, 15, 548–553. DOI: 10.1016/j.ultsonch.2007.06.001.

    Article  CAS  Google Scholar 

  45. Veverková, E., & Toma, Š. (2005). Microwave-assisted method for conversion of alcohols into N-Substituted amides using envirocat EPZG® as a catalyst. Chemical Papers, 59, 8–10.

    Google Scholar 

  46. Wedge, T. J., & Hawthorne, M. F. (2003). Multidentate carborane-containing Lewis acids and their chemistry: mercuracarborands. Coordination Chemistry Reviews, 240, 111–128. DOI: 10.1016/s0010-8545(02)00259-x.

    Article  CAS  Google Scholar 

  47. Zhang, Z. H., & Lui, Y. H. (2008). Antimony trichloride/SiO2 promoted synthesis of 9-ary-3,4,5,6,7,9-hexahydroxanthene-1,8-diones. Catalysis Communications, 9, 1715–1719. DOI: 10.1016/j.catcom.2008.01.031.

    Article  CAS  Google Scholar 

  48. Zolfigol, M. A. (2001). Silica sulfuric acid/NaNO2 as a novel heterogeneous system for production of thionitrites and disulfides under mild conditions. Tetrahedron, 57, 9509–9511. DOI: 10.1016/s0040-4020(01)00960-7.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bahador Karami.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Karami, B., Zare, Z. & Eskandari, K. Molybdate sulfonic acid: preparation, characterization, and application as an effective and reusable catalyst for octahydroxanthene-1,8-dione synthesis. Chem. Pap. 67, 145–154 (2013). https://doi.org/10.2478/s11696-012-0263-y

Download citation

Keywords

  • molybdate sulfonic acid
  • catalyst
  • cyclic 1,3-diketone
  • condensation reaction
  • solventfree