Skip to main content
Log in

Synthesis of new dendritic antenna-like polypyridine ligands

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

An efficient synthesis of multidentate polypyridine ligands, 3,5-bis(2,2′-bipyridin-4-ylethynyl)benzoic acid and 3,5-bis(2,5-bis(2-pyridyl)-pyridin-4-ylethynyl)benzoic acid, with potential application in the production of ruthenium dyes for dye-sensitised solar cells was developed. Isolation of intermediate products and final compounds is simple and the yields are very high. The ligands obtained can be used in the synthesis of dendritic analogues of well known and very efficient N3 dye and “black dye”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alston, J. R., Kobayashi, S., Younts, T. J., & Poler, J. C. (2010). Synthesis and characterization of rigid +2 and +3 heteroleptic dinuclear ruthenium(II) complexes. Polyhedron, 29, 2696–2702. DOI: 10.1016/j.poly.2010.06.012.

    Article  CAS  Google Scholar 

  • Balzani, V., Ceroni, P., Juris, A., Venturi, M., Campagna, S., Puntoriero, F., & Serroni, S. (2001). Dendrimers based on photoactive metal complexes. Recent advances. Coordination Chemistry Reviews, 219–221, 545–572. DOI: 10.1016/s0010-8545(01)00351-4.

    Article  Google Scholar 

  • Bodige, S., Torres, A. S., Maloney, D. J., Tate, D., Kinsel, G. R., Walker, A. K., & MacDonnell, F. M. (1997). First-generation chiral metallodendrimers: Stereoselective synthesis of rigid D3-symmetric tetranuclear ruthenium complexes. Journal of the American Chemical Society, 119, 10364–10369. DOI: 10.1021/ja9720467.

    Article  CAS  Google Scholar 

  • Campagna, S., Di Pietro, C., Loiseau, F., Maubert, B., McClenaghan, N., Passalacqua, R., Puntoriero, F., Ricevuto, V., & Serroni, S. (2002). Recent advances in luminescent polymetallic dendrimers containing the 2,3-bis(2′-pyridyl)pyrazine bridging ligand. Coordination Chemistry Reviews, 229, 67–74. DOI: 10.1016/s0010-8545(02)00042-5.

    Article  CAS  Google Scholar 

  • Dutta, S., Baitalik, S., Ghosh, M., Flörke, U., & Nag, K. (2011). Structural, photophysical and electrochemical studies of [RuN6]2+ complexes having polypyridine and azole mixeddonor sites. Inorganica Chimica Acta, 372, 227–236. DOI: 10.1016/j.ica.2011.01.082.

    Article  CAS  Google Scholar 

  • Funaki, T., Yanagida, M., Onozawa-Komatsuzaki, N., Kawanishi, Y., Kasuga, K., & Sugihara, H. (2009). Ruthenium (II) complexes with π expanded ligand having phenylene-ethynylene moiety as sensitizers for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 93, 729–732. DOI: 10.1016/j.solmat.2008.09.011.

    Article  CAS  Google Scholar 

  • Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., & Pettersson, H. (2010). Dye-sensitized solar cells. Chemical Reviews, 110, 6595–6663. DOI: 10.1021/cr900356p.

    Article  CAS  Google Scholar 

  • Hagfeldt, A., & Grätzel, M. (1995). Light-induced redox reactions in nanocrystalline systems. Chemical Reviews, 95, 49–68. DOI: 10.1021/cr00033a003.

    Article  CAS  Google Scholar 

  • Hagfeldt, A., & Grätzel, M. (2000). Molecular photovoltaics. Accounts of Chemical Research, 33, 269–277. DOI: 10.1021/ar980112j.

    Article  CAS  Google Scholar 

  • Huang, W., & Han, C. D. (2006). Ruthenium(II) complexinduced dispersion of montmorillonite in a segmented mainchain liquid-crystalline polymer having side-chain terpyridine group. Macromolecules, 39, 8207–8209. DOI: 10.1021/ma0619637.

    Article  CAS  Google Scholar 

  • Günes, S., & Sariciftci, N. S. (2008). Hybrid solar cells. Inorganica Chimica Acta, 361, 581–588. DOI: 10.1016/j.ica.2007.06.042.

    Article  Google Scholar 

  • Kalinowska-Lis, U., Żurowska, B., & Ochocki, J. (2011). Spectroscopic and magnetic evidence of coordination properties of bioactive diethyl (pyridin-4-ylmethyl)phosphate ligand with chloride transition-metal ions. Chemical Papers, 65, 660–666. DOI: 10.2478/s11696-011-0056-8.

    Article  CAS  Google Scholar 

  • Klein, C., Baranoff, E., Grätzel, M., & Nazeeruddin, M. K. (2011). Convenient synthesis of tridentate 2,6-di(pyrazol-1-yl)-4-carboxypyridine and tetradentate 6,6′-di(pyrazol-1-yl)-4,4′-dicarboxy-2,2′-bipyridine ligands. Tetrahedron Letters, 52, 584–587. DOI: 10.1016/j.tetlet.2010.12.001.

    Article  CAS  Google Scholar 

  • Li, B., Wang, L., Kang, B., Wang, P., & Qiu, Y. (2006). Review of recent progress in solid-state dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 90, 549–573. DOI: 10.1016/j.solmat.2005.04.039.

    Article  CAS  Google Scholar 

  • Matsuda, K., Stone, M. T., & Moore, J. S. (2002). Helical pitch of m-phenylene ethynylene foldamers by double spin labeling. Journal of the American Chemical Society, 124, 11836–11837. DOI: 10.1021/ja027437m.

    Article  CAS  Google Scholar 

  • Muro, M. L., & Castellano, F. N. (2007). Room temperature photoluminescence from [Pt(4′-C≡CR-tpy)Cl]+ complexes. Dalton Transactions, 2007, 4659–4665. DOI: 10.1039/b7098 86c.

    Article  Google Scholar 

  • O’Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353, 737–740. DOI: 10.1038/353737a0.

    Article  Google Scholar 

  • Puntoriero, F., Campagna, S., Stadler, A. M., & Lehn, J. M. (2008). Luminescence properties and redox behavior of Ru(II) molecular racks. Coordination Chemistry Reviews, 252, 2480–2492. DOI: 10.1016/j.ccr.2007.12.009.

    Article  CAS  Google Scholar 

  • Puntoriero, F., Sartorel, A., Orlandi, M., La Ganga, G., Serroni, S., Bonchio, M., Scandola, F., & Campagna, S. (2011). Photoinduced water oxidation using dendrimeric Ru(II) complexes as photosensitizers. Coordination Chemistry Reviews, 255, 2594–2601. DOI: 10.1016/j.ccr.2011.01.026.

    Article  CAS  Google Scholar 

  • Spiccia, L., Deacon, G. B., & Kepert, C. M. (2004). Synthetic routes to homoleptic and heteroleptic ruthenium(II) complexes incorporating bidentate imine ligands. Coordination Chemistry Reviews, 248, 1329–1341. DOI: 10.1016/j.ccr.2004.04.008.

    Article  CAS  Google Scholar 

  • Tan, L. F., Wang, F., Chao, H., Zhang, S., Fei, J. J., & Ji, L. N. (2008). DNA interactions of the functionalized (mixed polypyridine)ruthenium(II) complex bis(2,2′-bipyridine-κN 1,κN 1′)(methyldipyrido[3,2-a:2′,3′-c]phenazine-11-carboxylate-κN 4,κN 5)ruthenium(2+) ([Ru(bpy)2 (dppz-11-CO2Me)]2+). Helvetica Chimica Acta, 91, 1251–1260. DOI: 10.1002/hlca.200890136.

    Article  CAS  Google Scholar 

  • Vougioukalakis, G. C., Philippopoulos, A. I., Stergiopoulos, T., & Falaras, P. (2011). Contributions to the development of ruthenium-based sensitizers for dye-sensitized solar cells. Coordination Chemistry Reviews, 255, 2602–2621. DOI: 10.1016/j.ccr.2010.11.006.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Zalas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zalas, M., Gierczyk, B., Cegłowski, M. et al. Synthesis of new dendritic antenna-like polypyridine ligands. Chem. Pap. 66, 733–740 (2012). https://doi.org/10.2478/s11696-012-0196-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0196-5

Keywords

Navigation