Reduction of aromatic nitro compounds to amines using zinc and aqueous chelating ethers: Mild and efficient method for zinc activation

Abstract

A mild, environmentally friendly method for reduction of aromatic nitro group to amine is reported, using zinc powder in aqueous solutions of chelating ethers. The donor ether acts as a ligand and also serves as a co-solvent. Water is the proton source. This procedure is also a new method for the activation of zinc for electron transfer reduction of aromatic nitro compounds. The reduction is accomplished in a neutral medium and other reducing groups remained unaffected. The ethers used are dioxolane, 1,4-dioxane, ethoxymethoxyethane, dimethoxymethane, 1,2-dimethoxyethane, and diglyme.

This is a preview of subscription content, access via your institution.

References

  1. Abiraj, K., Srinivasa, G., & Gowda, D. C. (2005). Palladiumcatalyzed simple and efficient hydrogenative cleavage of azo compounds using recyclable polymer-supported formate. Canadian Journal of Chemistry, 83, 517–520. DOI:10.1139/v05-071.

    Article  CAS  Google Scholar 

  2. Ashley, J. N., Berg, S. S., & MacDonald, R. D. (1960). The search for chemotherapeutic amidines. Part XVI. Amidinoanilino-1,3,5-triazines and related compounds. Journal of the Chemical Society, 1960, 4525–4532. DOI: 10.1039/jr9600004525.

    Google Scholar 

  3. Bellamy, F. D., & Ou, K. (1984). Selective reduction of aromatic nitro compounds with stannous chloride in non acidic and non aqueous medium. Tetrahedron Letters, 25, 839–842. DOI:10.1016/s0040-4039(01)80041-1.

    Article  CAS  Google Scholar 

  4. Dupont, J., de Souza, R. F., & Suarez, P. A. Z. (2002). Ionic liquid (molten salt) phase organometallic catalysis. Chemical Reviews, 102, 3667–3692. DOI: 10.1021/cr010338r.

    Article  CAS  Google Scholar 

  5. Dyson, P. J., Ellis, D. J., Welton, T., & Parker, D. G. (1999). Arene hydrogenation in a room-temperature ionic liquid using a ruthenium cluster catalyst. Chemical Communications, 1999, 25–26. DOI: 10.1039/a807447j.

    Article  Google Scholar 

  6. Gowda, D., Mahesh, B., & Shankare, G. (2001). Zinc-catalyzed ammonium-formate reductions: Reduction of nitro compounds. Indian Journal of Chemistry Section B, 40, 75–77.

    Google Scholar 

  7. Harmon, R. E., Gupta, S. K., & Brown, D. J. (1973). Hydrogenation of organic compounds using homogeneous catalysts. Chemical Reviews, 73, 21–52. DOI: 10.1021/cr60281a003.

    Article  CAS  Google Scholar 

  8. Hazlet, S. E., & Dornfeld, C. A. (1944). The reduction of aromatic nitro compounds with activated iron. Journal of the American Chemical Society, 66, 1781–1782. DOI:10.1021/ja01238a049.

    Article  CAS  Google Scholar 

  9. Ho, T. L., & Wang, C. M. (1974). Reduction of aromatic nitro compounds by titanium(III) chloride. Synthesis, 1974, 45. DOI: 10.1055/s-1974-23246.

    Article  Google Scholar 

  10. Johnstone, R. A. W., Willby, A. H., & Entwistle, I. D. (1985). Heterogeneous catalytic transfer hydrogenation and its relation to other methods of reduction of organic compounds. Chemical Reviews, 85, 129–170. DOI: 10.1021/cr00066a003.

    Article  CAS  Google Scholar 

  11. Khan, F. A., Dash, J., Sudheer, C., & Gupta, R. K. (2003). Chemoselective reduction of aromatic nitro and azo compounds in ionic liquids using zinc and ammonium salts. Tetrahedron Letters, 44, 7783–7787. DOI: 10.1016/j.tetlet.2003.08.080.

    Article  CAS  Google Scholar 

  12. Kijima, M., Nambu, Y., Endo, T., & Okawara, M. (1984). Selective reduction of monosubstituted nitrobenzenes to anilines by dihydrolipoamide-iron(II). Journal of Organic Chemistry, 49, 1434–1436. DOI: 10.1021/jo00182a023.

    Article  CAS  Google Scholar 

  13. Liu, Y., Lu, Y., Prashad, M., Repic, O., & Blacklock, T. J. (2005). A practical and chemoselective reduction of nitroarenes to anilines using activated iron. Advanced Synthesis and Catalysis, 347, 217–219. DOI: 10.1002/adsc.200404236.

    Article  CAS  Google Scholar 

  14. Lyle, R. E., & Lamittina, J. L. (1974). Selective hydrogenation of 2,6-dinitroanilines. Synthesis, 1974, 726–727.

    Article  Google Scholar 

  15. O’Neil, M. J. (2006a). Merck Index (pp. 659). Whitehouse Station, NY, USA: Merck Research Laboratories.

    Google Scholar 

  16. O’Neil, M. J. (2006b). Merck Index (pp. 462). Whitehouse Station, NY, USA: Merck Research Laboratories.

    Google Scholar 

  17. O’Neil, M. J. (2006c). Merck Index (pp. 7284). Whitehouse Station, NY, USA: Merck Research Laboratories.

    Google Scholar 

  18. O’Neil, M. J. (2006d). Merck Index (pp. 2118). Whitehouse Station, NY, USA: Merck Research Laboratories.

    Google Scholar 

  19. O’Neil, M. J. (2006e). Merck Index (pp. 9536). Whitehouse Station, NY, USA: Merck Research Laboratories.

    Google Scholar 

  20. O’Neil, M. J. (2006f). Merck Index (pp. 6398). Whitehouse Station, NY, USA: Merck Research Laboratories.

    Google Scholar 

  21. Onopchenko, A., Sabourin, E. T., & Selwitz, C. M. (1979). Selective catalytic hydrogenation of aromatic nitro groups in the presence of acetylenes. Synthesis of (3-aminophenyl) acetylene via hydrogenation of (3-nitrophenyl)acetylene over cobalt polysulfide and ruthenium sulfide catalysts. Journal of Organic Chemistry, 44, 3671–3674. DOI: 10.1021/jo01335a011.

    Article  CAS  Google Scholar 

  22. Popp, F. D., & Schultz, H. P. (1962). Electrolytic reduction of organic compounds. Chemical Reviews, 62, 19–40. DOI:10.1021/cr60215a002.

    Article  CAS  Google Scholar 

  23. Ram, S., & Ehernkaufer, R. E. (1984). A general procedure for mild and rapid reduction of aliphatic and aromatic nitro compounds using ammonium formate as a catalytic hydrogen transfer agent. Tetrahedron Letters, 25, 3415–3418. DOI:10.1016/s0040-4039(01)91034-2.

    Article  CAS  Google Scholar 

  24. Rinderknecht, H., Koechlin, H., & Niemann, C. (1953). Oxindolylalanine. Journal of Organic Chemistry, 18, 971–982. DOI: 10.1021/jo50014a011.

    Article  CAS  Google Scholar 

  25. Sarmah, P., & Dutta, D. K. (2003). Manganese mediated aqueous reduction of aromatic nitro compounds to amines. Journal of Chemical Research, 2003, 236–237. DOI: 10.3184/030823403103173624.

    Article  Google Scholar 

  26. Sheldon, R. (2001). Catalytic reactions in ionic liquids. Chemical Communications, 2001, 2399–2407. DOI: 10.1039/b107270f.

    Article  Google Scholar 

  27. Simpson, J. C. E., Atkinson, C. M., Schofield, K., & Stephenson, O. (1945). o-Amino-ketones of the acetophenone and benzophenone types. Journal of the Chemical Society, 1945, 646–657. DOI: 10.1039/jr9450000646.

    Google Scholar 

  28. Staiger, R. P., & Miller, E. B. (1959). Isatoic anhydride. IV. Reactions with various nucleophiles. Journal of Organic Chemistry, 24, 1214–1219. DOI: 10.1021/jo01091a013.

    Article  CAS  Google Scholar 

  29. Steines, S., Wasserscheid, P., & Drießen-Hölscher, B. (2000). An ionic liquid as catalyst medium for stereoselective hydrogenations of sorbic acid with ruthenium complexes. Journal für Praktische Chemie, 342, 348–354. DOI: 10.1002/(SICI)1521-3897(200004)342:4<348::AID-PRAC348>3.0.CO;2-6.

    Article  CAS  Google Scholar 

  30. Tsukinoki, T., & Tsuzuki, H. (2001). Organic reaction in water. Part 5. Novel synthesis of anilines by zinc metal-mediated chemoselective reduction of nitroarenes. Green Chemistry, 3, 37–38. DOI: 10.1039/b008219h.

    Article  CAS  Google Scholar 

  31. Ung, S., Falgui`eres, A., Guy, A., & Ferroud, C. (2005). Ultrasonically activated reduction of substituted nitrobenzenes to corresponding N-arylhydroxylamines. Tetrahedron Letters, 46, 5913–5917. DOI: 10.1016/j.tetlet.2005.06.126.

    Article  CAS  Google Scholar 

  32. Vogel, A. I., Furniss, B. S., Hannaford, A. J., Smith, P.W.G., & Tatchel, A. R. (1989). Vogel’s text book of practical organic chemistry (5th ed.). Harlow, UK: Longman.

    Google Scholar 

  33. Wasserscheid, P., & Keim, W. (2000). Ionic liquids-new “solutions” for transition metal catalysis. Angewandte Chemie International Edition, 39, 3772–3789. DOI: 10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5.

    Article  CAS  Google Scholar 

  34. Welton, T. (1999). Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chemical Reviews, 99, 2071–2084. DOI: 10.1021/cr980032t.

    CAS  Google Scholar 

  35. Yuste, F., Saldaña, M., & Walls, F. (1982). Selective reduction of aromatic nitro compounds containing o- and n-benzyl groups with hydrazine and Raney nickel. Tetrahedron Letters, 23, 147–148. DOI: 10.1016/s0040-4039(00)86770-2.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pookot Sunil Kumar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kumar, P.S., Lokanatha Rai, K.M. Reduction of aromatic nitro compounds to amines using zinc and aqueous chelating ethers: Mild and efficient method for zinc activation. Chem. Pap. 66, 772–778 (2012). https://doi.org/10.2478/s11696-012-0195-6

Download citation

Keywords

  • reduction
  • dioxolane
  • chelating ether
  • aqueous medium
  • zinc