Skip to main content
Log in

Seasonal changes of Rubisco content and activity in Fagus sylvatica and Picea abies affected by elevated CO2 concentration

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

We studied Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) content and activity in juvenile tree species — broadleaved Fagus sylvatica L. and coniferous Picea abies (L.) Karsten exposed for three growing seasons to ambient (A = 385 μmol mol−1) and elevated (E = 700 μmol mol−1) CO2 concentrations. Rubisco content was determined by the SDS-PAGE method, Rubisco activity was assayed spectrophotometrically. The highest content of Rubisco enzyme in F. sylvatica was measured immediately after full leaf development followed by a gradual decrease throughout the growing season. By contrast, Rubisco content in P. abies increased markedly during the growing season. In both tree species, down-regulation of Rubisco content in trees cultivated under elevated CO2 concentration was observed. Rubisco activity was stimulated in F. sylvatica by E treatment but not in P. abies. Because no significant differences were found in Rubisco activation state between A and E, we assume that stimulation of Rubisco activity in E is not a consequence of higher carbamylation but could be caused by the release of inhibitors from active sites of Rubisco under elevated CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ainsworth, E. A., & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant, Cell and Environment, 30, 258–270. DOI: 10.1111/j.1365-3040.2007.01641.x.

    Article  CAS  Google Scholar 

  • Besford, R. T., Mousseau, M., & Matteucci, G. (1998). Biochemistry, physiology and biophysics of photosynthesis. In P. G. Jarvis (Ed.), European forests and global change: The likely impacts of rising CO 2 and temperature (Chapter 2, pp. 29–78). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Cotrufo, M. F., Ineson, P., & Scott, A. (1998). Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biology, 4, 43–54. DOI: 10.1046/j.1365-2486.1998.00101.x.

    Article  Google Scholar 

  • Curtis, P. S., Vogel, C. S., Wang, X., Pregitzer, K. S., Zak, D. R., Lussenhop, J., Kubiske, M., & Teeri, J. A. (2000). Gas exchange, leaf nitrogen, and growth efficiency of Populus tremuloides in a CO2-enriched atmosphere. Ecological Applications, 10, 3–17. DOI: 10.2307/2640982.

    Google Scholar 

  • Griffin, K. L., & Seemann, J. R. (1996). Plants, CO2 and photosynthesis in the 21st century. Chemistry & Biology, 3, 245–254. DOI: 10.1016/s1074-5521(96)90104-0.

    Article  CAS  Google Scholar 

  • Griffin, K. L., Tissue, D. T., Turnbull, M. H., & Whitehead, D. (2000). The onset of photosynthetic acclimation to elevated CO2 partial pressure in field-grown Pinus radiata D. Don. after 4 years. Plant, Cell and Environment, 23, 1089–1098. DOI: 10.1046/j.1365-3040.2000.00622.x.

    Article  Google Scholar 

  • Hrstka, M., Urban, O., & Marek, M. V. (2005) Long-term effect of elevated CO2 on spatial differentiation of ribulose-1,5-bisphosphate carboxylase/oxygenase activity in Norway spruce canopy. Photosynthetica, 43, 211–216. DOI:10.1007/s11099-005-0035-9.

    Article  CAS  Google Scholar 

  • Hrstka, M., Zachová, L., Urban, O., & Košvancová, M. (2008). Seasonal changes of Rubisco activity and its content in Norway spruce exposed to ambient and elevated CO2 concentrations. Chemicke Listy, 102, s657–s659.

    Google Scholar 

  • IPCC (2007). Summary for policymakers. In B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, & L. A. Meyer (Eds.), Climate change 2007: Mitigation. Contribution of Working group III to the Fourth assessment report of the Intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Kalina, J., & Slovák, V. (2004). The inexpensive tool for the determination of projected leaf area. Ekologia (Bratislava), 23, 163–167.

    Google Scholar 

  • Košvancová, M., Urban, O., Šprtová, M., Hrstka, M., Kalina, J., Tomášková, I., Špunda, V., & Marek, M. V. (2009). Photosynthetic induction in broadleaved Fagus sylvatica and coniferous Picea abies cultivated under ambient and elevated CO2 concentrations. Plant Science, 177, 123–130. DOI: 10.1016/j.plantsci.2009.04.005.

    Article  Google Scholar 

  • Krapp, A., Hoffman, B., Schäfer, C., & Stitt, M. (1993). Regulation of the expression of rbcS and other photosynthetic genes by carbohydrates: a mechanism for the ’sink’ regulation of photosynthesis? The Plant Journal, 3, 817–828. DOI:10.1111/j.1365-313x.1993.00817.x.

    Article  CAS  Google Scholar 

  • Lilley, R. McC., & Walker, D. A. (1974). An improved spectrophotometric assay for ribulosebisphosphate carboxylase. Biochimica et Biophysica Acta (BBA) — Enzymology, 358, 226–229. DOI: 10.1016/0005-2744(74)90274-5.

    Article  CAS  Google Scholar 

  • Lorimer, G. H, Badger, M. R., & Andrews, T. J. (1976). The activation of ribulose-1,5-bisphosphate carboxylase by carbon dioxide and magnesium ions. Equilibria, kinetics, a suggested mechanism, and physiological implications. Biochemistry, 15, 529–536. DOI: 10.1021/bi00648a012.

    Article  CAS  Google Scholar 

  • Makino, A., Harada, M., Sato, T., Nakano, H., & Mae, T. (1997). Growth and N allocation in rice plants under CO2 enrichment. Plant Physiology, 115, 199–203. DOI: 10.1104/pp.115.1.199.

    CAS  Google Scholar 

  • Moore, B. D., Cheng, S. H., Sims, D., & Seemann, J. R. (1999). The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant, Cell and Environment, 22, 567–582. DOI: 10.1046/j.1365-3040.1999.00432.x.

    Article  CAS  Google Scholar 

  • Myers, D. A., Thomas, R. B., & DeLucia, E. H. (1999). Photosynthetic capacity of loblolly pine (Pinus taeda L.) trees during the first year of carbon dioxide enrichment in a forest ecosystem. Plant, Cell and Environment, 22, 473–481. DOI: 10.1046/j.1365-3040.1999.00434.x.

    Article  Google Scholar 

  • Nakano, H., Makino, A., & Mae, T. (1997). The effect of elevated partial pressures of CO2 on the relationship between photosynthetic capacity and N content in rice leaves. Plant Physiology, 115, 191–198. DOI: 10.1104/pp.115.1.191.

    CAS  Google Scholar 

  • Norby, R. J., & Zak, D. R. (2011). Ecological lessons from freeair CO2 enrichment (FACE) experiments. Annual Review of Ecology, Evolution, and Systematics, 42, 181–203. DOI:10.1146/annurev-ecolsys-102209-144647.

    Article  Google Scholar 

  • Nowak, R. S., Ellsworth, D. S., & Smith, S. D. (2004). Functional responses of plants to elevated atmospheric CO2 — do photosynthetic and productivity data from FACE experiments support early predictions? New Phytologist, 162, 253–280. DOI: 10.1111/j.1469-8137.2004.01033.x.

    Article  Google Scholar 

  • Parry, M. A. J., Keys, A. J., Madgwick, P. J., Carmo-Silva, A. E., & Andralojc, P. J. (2008). Rubisco regulation: a role for inhibitors. Journal of Experimental Botany, 59, 1569–1580. DOI: 10.1093/jxb/ern084.

    Article  CAS  Google Scholar 

  • Pérez, P., Morcuende, R., del Molino, I. M., & Martínez-Carrasco, R. (2005). Diurnal changes of Rubisco in response to elevated CO2, temperature and nitrogen in wheat grown under temperature gradient tunnels. Enviromental and Experimental Botany, 53, 13–27 DOI:10.1016/j.envexpbot.2004.02.008.

    Article  Google Scholar 

  • Portis, A. R., Jr., Li, C., Wang, D., & Salvucci, M. E. (2008). Regulation of Rubisco activase and its interaction with Rubisco. Journal of Experimental Botany, 59, 1597–1604. DOI: 10.1093/jxb/erm240.

    Article  CAS  Google Scholar 

  • Riikonen, J., Holopainen, T., Oksanen, E., & Vapaavuori, E. (2005). Leaf photosynthetic characteristics of silver birch during three years of exposure to elevated concentrations of CO2 and O3 in the field. Tree Physiology, 25, 621–632. DOI: 10.1093/treephys/25.5.621.

    Article  CAS  Google Scholar 

  • Rogers, A., & Ellsworth, D. S. (2002). Photosynthetic acclimation of Pinus taeda (loblolly pine) to long-term growth in elevated pCO2 (FACE). Plant, Cell and Environment, 25, 851–858. DOI: 10.1046/j.1365-3040.2002.00868.x.

    Article  CAS  Google Scholar 

  • Sage, R. F., Pearcy, R. W., & Seemann, J. R. (1987). The nitrogen use efficiency of C3 and C4 plants. III. Leaf nitrogen effects on the activity of carboxylating enzymes in Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiology, 85, 355–359. DOI: 10.1104/pp.85.2.355.

    Article  CAS  Google Scholar 

  • Sicher, R. C., & Bunce, J. A. (1997). Relationship of photosynthetic acclimation to changes of Rubisco activity in fieldgrown winter wheat and barley during growth in elevated carbon dioxide. Photosynthesis Research, 52, 27–38. DOI: 10.1023/a:1005874932233.

    Article  CAS  Google Scholar 

  • Sokolov, A. P., Stone, P. H., Forest, C. E., Prinn, R., Sarofim, M. C., Webster, M., Paltsev, S., Schlosser, C. A., Kicklighter, D., Dutkiewicz, S., Reilly, J., Wang, C., Felzer, B., Melillo, J. M., & Jacoby, H. D. (2009). Probabilistic forecast for twenty-first-century climate based on uncertainties in emissions (without policy) and climate parameters. Journal of Climate, 22, 5175–5204. DOI:10.1175/2009jcli2863.1.

    Article  Google Scholar 

  • Stitt, M. (1991). Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant, Cell and Environment, 14, 741–762. DOI: 10.1111/j.1365-3040.1991.tb01440.x.

    Article  CAS  Google Scholar 

  • Tissue, D. T., Griffin, K. L., & Ball, J. T. (1999). Photosynthetic adjustment in field-grown ponderosa pine trees after six years of exposure to elevated CO2. Tree Physiology, 19, 221–228.

    Article  Google Scholar 

  • Tissue, D. T., Thomas, R. B., & Strain, B. R. (1993). Long-term effects of elevated CO2 and nutrients on photosynthesis and rubisco in loblolly pine seedlings. Plant, Cell and Environment, 16, 859–865. DOI: 10.1111/j.1365-3040.1993.tb00508.x.

    Article  CAS  Google Scholar 

  • Turnbull, M. H., Tissue, D. T., Griffin, K. L., Rogers, G. N. D., & Whitehead, D. (1998). Photosynthetic acclimation to long-term exposure to elevated CO2 concentration in Pinus radiata D. Don. is related to age of needles. Plant, Cell and Environment, 21, 1019–1028. DOI: 10.1046/j.1365-3040.1998.00374.x.

    Article  Google Scholar 

  • Urban, O., Janouš, D., Pokorný, R., Marková, I., Pavelka, M., Fojtík, Z., Šprtová, M., Kalina, J., & Marek, M. V. (2001). Glass domes with adjustable windows: A novel technique for exposing juvenile forest stands to elevated CO2 concentration. Photosynthetica, 39, 395–401 DOI: 10.1023/a:1015134427592.

    Article  Google Scholar 

  • Van Oosten, J. J., Wilkins, D., & Besford, R. T. (1994). Regulation of the expression of photosynthetic nuclear genes by CO2 is mimicked by regulation by carbohydrates: a mechanism for the acclimation of photosynthesis to high CO2? Plant, Cell and Environment, 17, 913–923. DOI: 10.1111/j.1365-3040.1994.tb00320.x.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Hrstka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hrstka, M., Urban, O. & Babák, L. Seasonal changes of Rubisco content and activity in Fagus sylvatica and Picea abies affected by elevated CO2 concentration. Chem. Pap. 66, 836–841 (2012). https://doi.org/10.2478/s11696-012-0188-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0188-5

Keywords

Navigation