Skip to main content
Log in

Effect of Ag-doping of nanosized FeMgO system on its structural, surface, spectral, and catalytic properties

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The effects of Ag-doping on the physico-chemical, spectral, surface, and catalytic properties of the FeMgO system with various Fe2O3 loadings were investigated. The dopant (Ag) molar ratio varied between 0.01 % and 0.05 %. The techniques employed for characterisation of catalysts were TG/DTG, XRD, ESR, N2 adsorption at −196°C, and catalytic decomposition of H2O2 at 25–35°C. The results obtained revealed that the investigated catalysts consisted of nanosized MgO as the major phase, apart from the MgFe2O4 and/or Fe3O4 phases. ESR result of the FeMgO system revealed the presence of paramagnetic species as a result of Ag-doping. The textural properties including SBET, porosity and St were modified by Ag-doping. The doping process with Ag-species improved the catalytic activity of the FeMgO system. Increasing the calcination temperature from 400°C to 800°C increased the catalytic activity (k*30 °C) of 0.05 AgFeMgO in H2O2 decomposition by 21.2 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Sayari, S., Carley, A. F., Taylor, S. H., & Hutchings, G. J. (2007). Au/ZnO and Au/Fe2O3 catalysts for CO oxidation at ambient temperature: comments on the effect of synthesis conditions on the preparation of high activity catalysts prepared by coprecipitation. Topics in Catalysis, 44, 123–128. DOI: 10.1007/s11244-007-0285-9.

    Article  CAS  Google Scholar 

  • Anand, S., & Srivastava, O. N. (2002). Effect of AgNO3 additive/ doping on microstructure and superconductivity of the Pb doped Hg: 1223 thin film prepared through spray pyrolysis. Journal of Physics and Chemistry of Solids, 63, 1647–1653. DOI: 10.1016/s0022-3697(01)00249-9.

    Article  CAS  Google Scholar 

  • Bachari, K., Touileb, A., Saadi, A., Halliche, D., & Cherifi, O. (2010). Synthesis and structural characterization of iron-modified folded sheet mesoporous materials. Journal of Porous Materials, 17, 573–581. DOI: 10.1007/s10934-009-9326-z.

    Article  CAS  Google Scholar 

  • Bandara, J., Mielczarski, J. A., Lopez, A., & Kiwi, J. (2001). Sensitized degradation of chlorophenols on iron oxides induced by visible light: Comparison with titanium oxide. Applied Catalysis B: Environmental, 34, 321–333. DOI: 10.1016/s0926-3373(01)00225-9.

    Article  CAS  Google Scholar 

  • Berlier, G., Spoto, G., Bordiga, S., Ricchiardi, G., Fisicaro, P., Zecchina, A., Rossetti, I., Selli, E., Forni, L., Giamello, E., & Lamberti, C. (2002). Evolution of extraframework iron species in Fe silicalite: 1. Effect of Fe content, activation temperature, and interaction with redox agents. Journal of Catalysis, 208, 64–82. DOI: 10.1006/jcat.2002.3535.

    Article  CAS  Google Scholar 

  • Boudjemaa, A., Boumaza, S., Trari, M., Bouarab, R., & Bouguelia, A. (2009). Physical and photo-electrochemical characterizations of α-Fe2O3. Application for hydrogen production. International Journal of Hydrogen Energy, 34, 4268–4274. DOI: 10.1016/j.ijhydene.2009.03.044.

    Article  CAS  Google Scholar 

  • Brinen, J. S., Schmitt, J. L., Doughman, W. R., Achorn, P. J., Siegel, L. A., & Delgass, W. N. (1975). X-ray photoelectron spectroscopy studies of the rhodium on charcoal catalyst: II. Dispersion as a function of reduction. Journal of Catalysis, 40, 295–300. DOI: 10.1016/0021-9517(75)90259-6.

    Article  CAS  Google Scholar 

  • Brückner, A., Lück, R., Wieker, W., Fahlke, B., & Mehner, H. (1992). E.p.r. study on the incorporation of Fe(III) ions in ZSM-5 zeolites in dependence on the preparation conditions. Zeolites, 12, 380–385. DOI: 10.1016/0144-2449(92)90034-m.

    Article  Google Scholar 

  • Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319. DOI: 10.1021/ja01269a023.

    Article  CAS  Google Scholar 

  • Cao, J. L., Wang, Y., Yu, X. L., Wang, S. R., Wu, S. H., & Yuan, Z. Y. (2008). Mesoporous CuO-Fe2O3 composite catalysts for low-temperature carbon monoxide oxidation. Applied Catalysis B: Environmental, 79, 26–34. DOI: 10.1016/j.apcatb.2007.10.005.

    Article  CAS  Google Scholar 

  • Chen, H. L., Wu, L. G., & Zhu, C. L. (2000). PVA membrane filled β-cyclodextrin for separation of isomeric xylenes by pervaporation. Chemical Engineering Journal, 78, 159–164. DOI: 10.1016/s1385-8947(00)00154-6.

    Article  CAS  Google Scholar 

  • Choa, Y. H., Yang, J. K., Yang, W. J., & Auh, K. H. (2003). Synthesis and characterization of isolated iron oxide nanoparticle dispersed in MgO matrix. Journal of Magnetism and Magnetic Materials, 266, 20–27. DOI: 10.1016/s0304-8853(03)00451-7.

    Article  CAS  Google Scholar 

  • Costa, R. C. C., Lelis, M. F. F., Oliveira, L. C. A., Fabris, J. D., Ardisson, J. D., Rios, R. R. V. A., Silva, C. N., & Lago, R. M. (2006). Novel active heterogeneous Fenton system based on Fe3−x MxO4 (Fe, Co, Mn, Ni): The role of M2+ species on the reactivity towards H2O2 reactions. Journal of Hazardous Materials, 129, 171–178. DOI: 10.1016/j.jhazmat.2005.08.028.

    Article  CAS  Google Scholar 

  • Decyk, P., Trejda, M., Ziolek, M., Kujawa, J., Głaszczka, K., Bettahar, M., Monteverdi, S., & Mercy, M. (2003). Physicochemical and catalytic properties of iron-doped silica—the effect of preparation and pretreatment methods. Journal of Catalysis, 219, 146–155. DOI: 10.1016/s0021-9517(03)00186-6.

    Article  CAS  Google Scholar 

  • Deraz, N. A. M. (2001). Effect of Ag2O doping on surface and catalytic properties of cobalt-magnesia catalysts. Materials Letters, 51, 470–477. DOI: 10.1016/s0167-577x(01)00337-8.

    Article  CAS  Google Scholar 

  • Deraz, N. M. (2008). Production and characterization of pure and doped copper ferrite nanoparticles. Journal of Analytical and Applied Pyrolysis, 82, 212–222. DOI: 10.1016/j.jaap.2008.03.009.

    Article  CAS  Google Scholar 

  • Deraz, N. M. (2009). Characterization and catalytic performance of pure and Li2O-doped CuO/CeO2 catalysts. Applied Surface Science, 255, 3884–3890. DOI: 10.1016/j. apsusc.2008.10.068.

    Article  CAS  Google Scholar 

  • El-Molla, S. A. (2006). Dehydrogenation and condensation in catalytic conversion of iso-propanol over CuO/MgO system doped with Li2O and ZrO2. Applied Catalysis A: General, 298, 103–108. DOI: 10.1016/j.apcata.2005.09.029.

    Article  CAS  Google Scholar 

  • El-Shobaky, G. A., & Deraz, N. A. M. (2001). Surface and catalytic properties of cobaltic oxide supported on active magnesia. Materials Letters, 47, 231–240. DOI: 10.1016/s0167-577x(00)00240-8.

    Article  CAS  Google Scholar 

  • El-Shobaky, G. A., & Mostafa, A. A. (2003). Solid-solid interactions in Fe2O3/MgO system doped with aluminium and zinc oxides. Thermochimica Acta, 408, 75–84. DOI: 10.1016/s0040-6031(03)00323-x.

    Article  CAS  Google Scholar 

  • El-Shobaky, G. A., Shouman, M. A., & El-Khouly, S. M. (2003). Effect of silver oxide doping on surface and catalytic properties of Co3O4/Al2O3 system. Materials Letters, 58, 184–190. DOI: 10.1016/s0167-577x(03)00442-7.

    Article  Google Scholar 

  • Fuente, S. A., Belelli, P. G., Branda, M. M., Ferullo, R. M., & Castellani, N. J. (2009). Formation of Ag2, Au2 and AgAu particles on MgO(1 0 0): DFT study on the role of support-induced charge transfer in metal-metal interactions. Applied Surface Science, 255, 7380–7384. DOI: 10.1016/j.apsusc.2009.04.004.

    Article  CAS  Google Scholar 

  • Hamal, D. B., & Klabunde, K. J. (2007). Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2. Journal of Colloid and Interface Science, 311, 514–522. DOI: 10.1016/j.jcis.2007.03.001.

    Article  CAS  Google Scholar 

  • Ida, T., Tsuiki, H., Ueno, A., Tohji, K., Udagawa, Y., Iwai, K., & Sano, H. (1987). Characterization of iron oxide in Fe2O3/SiO2 catalyst. Journal of Catalysis, 106, 428–439. DOI: 10.1016/0021-9517(87)90255-7.

    Article  CAS  Google Scholar 

  • Khaleel, A., Shehadil, I., & Al-Shamisi, M. (2010). Nanostructured chromium-iron mixed oxides: Physicochemical properties and catalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 355, 75–82. DOI: 10.1016/j.colsurfa.2009.11.041.

    Article  CAS  Google Scholar 

  • Kwan, W. P., & Voelker, B. M. (2003). Rates of hydroxyl radical generation and organic compound oxidation in mineralcatalyzed Fenton-like systems. Environmental Science & Technology, 37, 1150–1158. DOI: 10.1021/es020874g.

    Article  CAS  Google Scholar 

  • Lee, E. K., Jung, K. D., Joo, O. S., & Shul, Y. G. (2005). Influence of iron precursors on catalytic wet oxidation of H2S to sulfur over Fe/MgO catalysts. Journal of Molecular Catalysis A: Chemical, 239, 64–67. DOI: 10.1016/j.molcata.2005.05. 034.

    Article  CAS  Google Scholar 

  • Lin, D. H., Coudurier, G., & Vedrine, J. C. (1989). Fe-ZSM-5: Physicochemical and catalytic properties. Studies in Surface Science and Catalysis, 49, 1431–1448. DOI: 10.1016/s0167-2991(08)62028-5.

    Article  Google Scholar 

  • Lippens, B. C., & de Boer, J. H. (1965). Studies on pore system in catalysis: V. The t method. Journal of Catalysis, 4, 319–323. DOI: 10.1016/0021-9517(65)90307-6.

    Article  CAS  Google Scholar 

  • Liu, X., Shen, K., Wang, Y., Wang, Y., Guo, Y., Guo, Y., Yong, Z., & Lu, G. (2008). Preparation and catalytic properties of Pt supported Fe-Cr mixed oxide catalysts in the aqueousphase reforming of ethylene glycol. Catalysis Communications, 9, 2316–2318. DOI: 10.1016/j.catcom.2008.05.035.

    Article  CAS  Google Scholar 

  • Liu, Z., Hao, J., Fu, L., & Zhu, T. (2003). Study of Ag/La0.6 Ce0.4CoO3 catalysts for direct decomposition and reduction of nitrogen oxides with propene in the presence of oxygen. Applied Catalysis B: Environmental, 44, 355–370. DOI: 10.1016/s0926-3373(03)00103-6.

    Article  CAS  Google Scholar 

  • Meshkani, F., & Rezaei, M. (2010). Effect of process parameters on the synthesis of nanocrystalline magnesium oxide with high surface area and plate-like shape by surfactant assisted precipitation method. Powder Technology, 199, 144–148. DOI: 10.1016/j.powtec.2009.12.014.

    Article  CAS  Google Scholar 

  • Mishakov, I. V., Bedilo, A. F., Richards, R. M., Chesnokov, V. V., Volodin, A. M., Zaikovskii, V. I., Buyanov, R. A., & Klabunde, K. J. (2002). Nanocrystalline MgO as a dehydrohalogenation catalyst. Journal of Catalysis, 206, 40–48. DOI: 10.1006/jcat.2001.3474.

    Article  CAS  Google Scholar 

  • Mucka, V., & Tabacik, S. (1991). Catalytic properties of nickelcobalt mixed oxides and the influence of ionizing radiation. Radiation Physics and Chemistry, 38, 285–290. DOI: 10.1016/1359-0197(91)90094-I.

    CAS  Google Scholar 

  • Parida, K. M., Dash, S. S., Mallik, S., & Das, J. (2005). Effect of heat treatment on the physico-chemical properties and catalytic activity of manganese nodules leached residue towards decomposition of hydrogen peroxide. Journal of Colloid and Interface Science, 290, 431–436. DOI: 10.1016/j.jcis.2005.04.056.

    Article  CAS  Google Scholar 

  • Radwan, N. R. E. (2006). Influence of La2O3 and ZrO2 as promoters on surface and catalytic properties of CuO/MgO system prepared by sol-gel method. Applied Catalysis A: General, 299, 103–121. DOI: 10.1016/j.apcata.2005.10.008.

    Article  CAS  Google Scholar 

  • Rao, G. R., Sahu, H. R., & Mishra, B. G. (2003). Surface and catalytic properties of Cu-Ce-O composite oxides prepared by combustion method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 220, 261–269. DOI: 10.1016/s0927-7757(03)00080-3.

    Article  CAS  Google Scholar 

  • Renuka, N. K. (2010). A green approach for phenol synthesis over Fe3+/MgO catalysts using hydrogen peroxide. Journal of Molecular Catalysis A: Chemical, 316, 126–130. DOI: 10.1016/j.molcata.2009.10.010.

    Article  CAS  Google Scholar 

  • Sanli, A. E., & Aytaç, A. (2011). Response to Disselkamp: Direct peroxide/peroxide fuel cell as a novel type fuel cell. International Journal of Hydrogen Energy, 36, 869–875. DOI: 10.1016/j.ijhydene.2010.09.038.

    Article  CAS  Google Scholar 

  • Shaheen, W. M. (2002). Thermal solid-solid interaction and catalytic properties of CuO/Al2O3 system treated with ZnO and MoO3. Thermochimica Acta, 385, 105–116. DOI: 10.1016/s0040-6031(01)00710-9.

    Article  CAS  Google Scholar 

  • Shaheen, W. M. (2006). Thermal solid-solid interactions and catalytic properties of V2O5/Al2O3 system treated with Li2O and Ag2O. Materials Science and Engineering: B, 135, 30–37. DOI: 10.1016/j.mseb.2006.08.056.

    Article  CAS  Google Scholar 

  • Shaheen, W. M. (2008). Thermal solid-solid interactions and physicochemical properties of NiO/Fe2O3 system doped with K2O. Thermochimica Acta, 470, 18–26. DOI: 10.1016/j. tca.2008.01.012.

    Article  CAS  Google Scholar 

  • She, X., & Flytzani-Stephanopoulos, M. (2006). The role of Ag-O-Al species in silver-alumina catalysts for the selective catalytic reduction of NOx with methane. Journal of Catalysis, 237, 79–93. DOI: 10.1016/j.jcat.2005.09.036.

    Article  CAS  Google Scholar 

  • Teshima, N., Genfa, Z., & Dasgupta, P. K., (2004). Catalytic decomposition of hydrogen peroxide by a flow-through selfregulating platinum black heater. Analytica Chimica Acta, 510, 9–13. DOI: 10.1016/j.aca.2003.12.050.

    Article  CAS  Google Scholar 

  • Tsoncheva, T., Roggenbuck, J., Tiemann, M., Ivanova, L., Paneva, D., Mitov, I., & Minchev, C. (2008). Iron oxide nanoparticles supported on mesoporous MgO and CeO2: A comparative physicochemical and catalytic study. Microporous and Mesoporous Materials, 110, 339–346. DOI: 10.1016/j.micromeso.2007.06.021.

    Article  CAS  Google Scholar 

  • Turky, A. M. (2003). Electrical surface and catalytic properties of NiO as influenced by doping with CuO and Ag2O. Applied Catalysis A: General, 247, 83–93. DOI: 10.1016/s0926-860x(03)00089-9.

    Article  CAS  Google Scholar 

  • Turky, A. E. M., Radwan, N. R. E., & El-Shobaky, G. A. (2001). Surface and catalytic properties of CuO doped with MgO and Ag2O. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 181, 57–68. DOI: 10.1016/s0927-7757(00)00801-3.

    Article  CAS  Google Scholar 

  • Tzou, M. S., Teo, B. K., & Sachtler, W. M. H. (1988). Formation of Pt particles in Y-type zeolites: The influence of coexchanged metal cations. Journal of Catalysis, 113, 220–235. DOI: 10.1016/0021-9517(88)90250-3.

    Article  CAS  Google Scholar 

  • Wachs, I. E. (2005). Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials. Catalysis Today, 100, 79–94. DOI: 10.1016/j.cattod.2004.12.019.

    Article  CAS  Google Scholar 

  • Wang, J. A., Novaro, O., Bokhimi, X., López, T., Gómez, R., Navarrete, J., Llanos, M. E., & López-Salinas, E. (1998). Characterizations of the thermal decomposition of brucite prepared by sol-gel technique for synthesis of nanocrystalline MgO. Materials Letters, 35, 317–323. DOI: 10.1016/s0167-577x(97)00273-5.

    Article  CAS  Google Scholar 

  • Weast, R. C. (1984). Handbook of chemistry and physics (65th ed., pp. 165). Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Weckhuysen, B. M., Heidler, R., & Schoonheydt, R. A. (2004). Electron spin resonance spectroscopy. Molecular Sieves — Science and Technology, 4, 2733. DOI: 10.1007/b94238.

    Google Scholar 

  • Wee, J. H. (2006). Which type of fuel cell is more competitive for portable application: Direct methanol fuel cells or direct borohydride fuel cells? Journal of Power Sources, 161, 1–10. DOI: 10.1016/j.jpowsour.2006.07.032.

    Article  CAS  Google Scholar 

  • Wu, Y., Yan, A., He, Y., Wu, B., & Wu, T. (2010). Ni-Ag-O as catalyst for a novel one-step reaction to convert ethane to ethylene oxide. Catalysis Today, 158, 258–262. DOI: 10.1016/j.cattod.2010.03.041.

    Article  CAS  Google Scholar 

  • Zheng, J., Schmauke, T., Roduner, E., Dong, J. L., & Xu, Q. H. (2001). The influence of Fe on the dispersion, electronic state, sulfur-resistance and catalysis of platinum supported on KL zeolite. Journal of Molecular Catalysis A: Chemical, 171, 181–190. DOI: 10.1016/s1381-1169(01)00096-6.

    Article  CAS  Google Scholar 

  • Zielińska-Jurek, A., Kowalska, E., Sobczak, J. W., Lisowski, W., Ohtani, B., & Zaleska, A. (2011). Preparation and characterization of monometallic (Au) and bimetallic (Ag/Au) modified-titania photocatalysts activated by visible light. Applied Catalysis B: Environmental, 101, 504–514. DOI: 10.1016/j.apcatb.2010.10.022.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar A. El-Molla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Molla, S.A., Ali, L.I., Amin, N.H. et al. Effect of Ag-doping of nanosized FeMgO system on its structural, surface, spectral, and catalytic properties. Chem. Pap. 66, 722–732 (2012). https://doi.org/10.2478/s11696-012-0183-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0183-x

Keywords

Navigation