Skip to main content

A parametric study on coal gasification for the production of syngas


In this parametric study, the effects of coal and oxidiser type, air-to-fuel ratio, steam-to-fuel ratio, reactor temperature, and pressure on H2 and CO amounts at the gasifier output, H2/CO, and higher heating value of the syngas produced have been calculated using a coal gasification model. Model simulations have been performed to identify the optimum values which are assumed to be 100 % for both cold gas efficiency and carbon conversion efficiency in the gasification process. From this study, it may be observed that the moisture content of the coal type is of crucial importance for the air gasification process; the O2 content of similar coals (taking into consideration the moisture and H2 content) is of significant importance for the air gasification process. When compared with air gasification, air-steam gasification becomes a more effective coal gasification method. The optimum working condition for air-steam gasification is to carry out the process at one atmosphere. High gasifier temperatures are not needed for the air-steam gasification of coal.

This is a preview of subscription content, access via your institution.


  1. Casleton, K. H., Breault, R. W., & Richards, G. A. (2008). System issues and tradeoffs associated with syngas production and combustion. Combustion Science and Technology, 180, 1013–1052. DOI: 10.1080/00102200801962872.

    Article  CAS  Google Scholar 

  2. Huang, J., Fang, Y., Chen, H., & Wang, Y. (2003). Coal gasification characteristics in a PFB. Energy Fuels, 17, 1474–1479. DOI: 10.1021/ef030052k.

    Article  CAS  Google Scholar 

  3. Kaushal, P., Pröll, T., & Hofbauer, H. (2007). Model development and validation: co-combustion of residual char, gases and volatile fuels in the fast fluidized combustion chamber of a dual fluidized bed biomass gasifier. Fuel, 86, 2687–2695. DOI: 10.1016/j.fuel.2007.03.032.

    Article  CAS  Google Scholar 

  4. Li, X., Grace, J. R., Watkinson, A. P., Lim, C. J., & Ergüdenler, A. (2001). Equilibrium modeling of gasification: a free energy minimization approach and its application to a circulating fluidized bed coal gasifier. Fuel, 80, 195–207. DOI: 10.1016/s0016-2361(00)00074-0.

    Article  CAS  Google Scholar 

  5. Lin, S. Y., Harada, M., Suzuki, Y., & Hatano, H. (2002). Hydrogen production from coal by separating carbon dioxide during gasification. Fuel, 81, 2079–2085. DOI: 10.1016/s0016-2361(02)00187-4.

    Article  CAS  Google Scholar 

  6. Shi, S. P., Zitney, S. E., Shahnam, M., Syamlal, M., & Rogers, W. A. (2006). Modeling coal gasification with CFD and discrete phase method. Journal of the Energy Institute, 79, 217–221. DOI: 10.1179/174602206x148865.

    Google Scholar 

  7. Tsui, H., Yavuzkurt, S., & Scaroni, A. (2002). Thermodynamic analysis of the gasification of coal water slurry fuels for a circulating fluidized bed gasifier. Journal of Power and Energy, 216, 343–353. DOI: 10.1243/095765002320877838.

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Afsin Gungor.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gungor, A., Ozbayoglu, M., Kasnakoglu, C. et al. A parametric study on coal gasification for the production of syngas. Chem. Pap. 66, 677–683 (2012).

Download citation


  • coal gasification
  • syngas production
  • gasification simulation
  • chemical process optimization