Skip to main content
Log in

Doping level of Mn in high temperature grown Zn1−x Mn x O studied through electronic charge distribution, magnetization, and local structure

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Mn inclusion in the oxide based diluted magnetic semiconductor Zn1−x Mn x O (x = 0.04, 0.06, 0.08, and 0.10) grown by standard high temperature solid state reaction technique has been studied. The local and average structure of Zn1−x Mn x O was characterized by the super resolution technique maximum entropy method and pair distribution function analysis using the X-ray powder data. Magnetic studies on this material using a Vibrating Sample Magnetometer were also carried out to ascertain the doping level in Zn1−x Mn x O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akyuz, I., Kose, S., Atay, F., & Bilgin, V. (2006). The optical, structural and morphological properties of ultrasonically sprayed ZnO:Mn films. Semiconductor Science and Technology, 21, 1620–1626. DOI: 10.1088/0268-1242/21/12/020.

    Article  CAS  Google Scholar 

  • Chen, W., Zhao, L. F., Wang, Y. Q., Miao, J. H., Liu, S., Xia, Z. C., & Yuan, S. L. (2005). Effects of temperature and atmosphere on the magnetism properties of Mn-doped ZnO. Applied Physics Letters, 87, 42507. DOI: 10.1063/1.1952570.

    Article  Google Scholar 

  • Egami, T. (1990). Atomic correlations in non-periodic matter. Materials Transactions, JIM, 31, 163–176.

    Google Scholar 

  • Egami, T. (1998). PDF analysis applied to crystalline materials. In S. J. L. Billinge, & M. F. Thorpe (Eds.), Local structure from diffraction. New York, NY, USA: Plenum Press. DOI: 10.1007/0-306-47077-2 1.

    Google Scholar 

  • Farrow, C. L., Juhas, P., Liu, J. W., Bryndin, D., Božin, E. S., Bloch, J., Proffen, Th., & Billinge, S. J. L. (2007). PDF-fit2 and PDFgui: computer programs for studying nanostructure in crystals. Journal of Physics: Condensed Matter, 19, 335219. DOI: 10.1088/0953-8984/19/33/335219.

    Article  CAS  Google Scholar 

  • Iusan, D., Sanyal, B., & Eriksson, O. (2006). Theoretical study of the magnetism of Mn-doped ZnO with and without defects. Physical Review B, 74, 235208. DOI: 10.1103/Phys-RevB.74.235208.

    Article  Google Scholar 

  • Izumi, F., & Dilanian, R. A. (2002). Recent research developments in physics (Vol. 3, Part II, pp. 699–726). Trivandrum, Kerala, India: Transworld Research Network.

    Google Scholar 

  • Jayakumar, O. D., Salunke, H. G., Kadam, R. M., Mohapatra, M., Yaswant, G., & Kulshreshtha, S. K. (2006). Magnetism in Mn-doped ZnO nanoparticles prepared by a co-precipitation method. Nanotechnology, 17, 1278–1285. DOI: 10.1088/0957-4484/17/5/020.

    Article  CAS  Google Scholar 

  • Jeong, I. K., Thompson, J., Proffen, Th., Turner, A. M. P., & Billinge, S. J. L. (2001). PDFgetX: a program for obtaining the atomic pair distribution function from X-ray powder diffraction data. Journal of Applied Crystallography, 34, 536. DOI: 10.1107/s0021889801011487.

    Article  CAS  Google Scholar 

  • Karamat, S., Mahmood, S., Lin, J. J., Pan, Z. Y., Lee, P., Tan, T. L., Springham, S. V., Ramanujan, R. V., & Rawat, R. S. (2008). Structural, optical and magnetic properties of (ZnO)1−x (MnO2)x thin films deposited at room temperatur. Applied Surface Science, 254, 7285–7289. DOI: 10.1016/j.apsusc.2008.05.318.

    Article  CAS  Google Scholar 

  • Momma, K., & Izumi, F. J. (2008). VESTA: a three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 41, 653–658. DOI: 10.1107/s0021889808012016.

    Article  CAS  Google Scholar 

  • Norton, D. P., Pearton, S. J., Hebard, A. F., Theodoropoulou, N., Boatner, L. A., & Wilson, R. G. (2003). Ferromagnetism in Mn-implanted ZnO:Sn single crystals. Applied Physics Letters, 82, 239–241. DOI: 10.1063/1.1537457.

    Article  CAS  Google Scholar 

  • Pancove, J. (1979). Optical processes in semiconductors. Englewood Cliffs, NJ, USA: Prentice-Hall.

    Google Scholar 

  • Pearton, S. J., Abernathy, C. R., Overberg, M. E., Thaler, G. T., Norton, D. P., Theodoropoulou, N., Hebard, A. F., Park, Y. D., Ren, F., Kim, J., & Boatner, L. A. (2003a). Wide band gap ferromagnetic semiconductors and oxides. Journal of Applied Physics, 93, 1–13. DOI: 10.1063/1.1517164.

    Article  CAS  Google Scholar 

  • Pearton, S. J., Abernathy, C. R., Thaler, G. T., Frazier, R., Ren, F., Hebard, A. F., Park, Y. D., Norton, D. P., Tang, W., Stavola, M., Zavada, J. M., & Wilson, R. G. (2003b). Effects of defects and doping on wide band gap ferromagnetic semiconductors. Physica B: Condensed Matter, 340–342, 39–47. DOI: 10.1016/j.physb.2003.09.003.

    Article  Google Scholar 

  • Pearton, S. J., Norton, D. P., Ip, K., Heo, Y. W., & Steiner, T. (2004). Recent advances in processing of ZnO. Journal of Vacuum Science and Technology B, 22, 932–948. DOI: 10.1116/1.1714985.

    Article  CAS  Google Scholar 

  • Petříček, V., Dušek, M., & Palatinus, L. (2006). JANA 2006. The crystallographic computing system [computer software]. Prague, Czech Republic: Academy of Sciences of the Czech Republic.

    Google Scholar 

  • Priour, D. J., Hwang, E. H., & Das Sarma, S. (2004). Disordered RKKY lattice mean field theory for ferromagnetism in diluted magnetic semiconductors. Physics Review Letters, 92, 117201. DOI: 10.1103/PhysRevLett.92.117201.

    Article  Google Scholar 

  • Rietveld, H. M., (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2, 65–71. DOI: 10.1107/s0021889869006558.

    Article  CAS  Google Scholar 

  • Rubi, D., Fontcuberta, J., Calleja, A., Aragonès, Ll., Capdevila, X. G., & Segarra, M. (2007). Reversible ferromagnetic switching in ZnO:(Co, Mn) powders. Physical Review B, 75, 155322. DOI: 10.1103/physRevB.75.155322.

    Article  Google Scholar 

  • Saravanan, R., Majella Mary Ann, A., & Jainulabdeen, S. (2007). Non-nuclear maxima (NNM), symmetric and asymmetric charge distribution in solar grade Si and n-GaAs, using X-ray powder data. Physica B: Condensed Matter, 400, 16–21. DOI: 10.1016/j.physb.2007.06.010.

    Article  CAS  Google Scholar 

  • Saravanan, R., & Prema Rani, M. (2007). Maximum entropy method and multipole analysis of the bonding in sodium and vanadium metals. Journal of Physics: Condensed Matter, 19, 266221. DOI: 10.1088/0953-8984/19/26/266221.

    Article  CAS  Google Scholar 

  • Saravanan, R., Syed Ali, K. S., & Israel, S. (2008). Electron density distribution in Si and Ge using multipole, maximum entropy method and pair distribution function analysis. Pramana-Journal of Physics, 70, 679–696. DOI: 10.1007/s12043-008-0029-9.

    Article  CAS  Google Scholar 

  • Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystollographica Section A, 32, 751–767. DOI: 10.1107/s0567739476001551.

    Article  Google Scholar 

  • Sharma, P., Gupta, A., Rao, K. V., Owens, F. J., Sharma, R., Ahuja, R., Osorio Guillen, J. M., Johansson, B., & Gehring, G. A. (2003). Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nature Materials, 2, 673–677. DOI: 10.1038/nmat984.

    Article  CAS  Google Scholar 

  • Sharma, V. K., Xalxo, R., & Varma, G. D. (2007). Structural and magnetic studies of Mn-doped ZnO. Crystal Research and Technology, 42, 34–38. DOI: 10.1002/crat.200610766.

    Article  CAS  Google Scholar 

  • Shinde, V. R., Gujar, T. P., Lokhande, C. D., Mane, R. S., & Han, S. H. (2006). Mn doped and undoped ZnO films: A comparative structural, optical and electrical properties study. Materials Chemistry and Physics, 96, 326–330. DOI: 10.1016/j.matchemphys.2005.07.045.

    Article  CAS  Google Scholar 

  • Singh, L. K., & Mohan, H. (1975). Optical semiconductor element and fabricating method. Indian Journal of Pure & Applied Physics, 13, 486–488.

    CAS  Google Scholar 

  • Tauc, J., Grigorovici, R., & Vancu, A. (1966). Optical properties and electronic structure of amorphous germanium. Physica Status Solidi (b), 15, 627–637. DOI: 10.1002/pssb.19660150 224.

    Article  CAS  Google Scholar 

  • Wagner, C. N. J. (1978). Direct methods for the determination of atomic-scale structure of amorphous solids (X-ray, electron, and neutron scattering). Journal of Non-Crystalline Solids, 31, 1–40. DOI: 10.1016/0022-3093(78)90097-2.

    Article  CAS  Google Scholar 

  • Warren, B. E. (1990). X-ray diffraction. New York, NY, USA: Dover Books on Physics.

    Google Scholar 

  • Yan, W., Sun, Z., Liu, Q., Li, Z., Pan, Z., Wang, J., Wei, S., Wang, D., Zhou, Y., & Zhang, X. (2007). Zn vacancy induced room-temperature ferromagnetism in Mn-doped ZnO. Applied Physics Letters, 91, 062113. DOI: 10.1063/1.2769391.

    Article  Google Scholar 

  • Yuonesi, M., Ghazi, M. E., Izadifard, M., & Yaghobi, M. (2008). The optical and structural properties of ZnO:Mn nano films grown by sol-gel. Journal of Optoelectronics and Advanced Materials, 10, 2603–2606.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramachandran Saravanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saravanan, R., Francis, S. & Berchmans, J.L. Doping level of Mn in high temperature grown Zn1−x Mn x O studied through electronic charge distribution, magnetization, and local structure. Chem. Pap. 66, 226–234 (2012). https://doi.org/10.2478/s11696-011-0129-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0129-8

Keywords

Navigation