Skip to main content
Log in

Oxidation of 3,5-di-tert-butylcatechol in the presence of V-polyoxometalate

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The oxidase and dioxygenase reactions of 3,5-di-tert-butylcatechol (DTBC, I) in the presence of V-polyoxometalate were studied. It was found that the addition of a Lewis base quenched the V-polyoxometalate-catalysed catechol dioxygenase reaction and catalysed the oxidase reaction selectively. The existence of V-polyoxometalate accelerates the autoxidation rate of I as demonstrated by the rate measurements. ESR and UV-VIS spectra showed that the Lewis base destroyed the dioxygenation reaction catalyst as formed and restrained its regeneration by suppressing the coordination of catechol radical to vanadium. The by-products of the dioxygenation and oxidation reactions are H2O and H2O2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bader, H., Sturzenegger, V., & Hoigné, J. (1988). Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N,N-diethyl-p-phenylenediamine (DPD). Water Research, 22, 1109–1115. DOI: 10.1016/0043-1354(88)90005-x.

    Article  CAS  Google Scholar 

  • Branca, M., Micera, G., Dessi, A., Sanna, D., & Raymond, K. N. (1990). Formation and structure of the tris(catecholato)vanadate(IV) complex in aqueous solution. Inorganic Chemistry, 29, 1586–1589. DOI: 10.1021/ic00333a030.

    Article  CAS  Google Scholar 

  • Cowan, J. A. (1998). Metal activation of enzymes in nucleic acid biochemistry. Chemical Reviews, 98, 1067–1088. DOI: 10.1021/cr960436q.

    Article  CAS  Google Scholar 

  • Cox, D. D., & Que, L., Jr. (1988). Functional models for catechol 1,2-dioxygenase. The role of the iron(III) center. Journal of the American Chemical Society, 110, 8085–8092. DOI:10.1021/ja00232a021.

    CAS  Google Scholar 

  • Day, V. W., Klemperer, W. G., & Maltbie, D. J. (1987). Where are the protons in H3V10O 3−28 ? Journal of the American Chemical Society, 109, 2991–3002. DOI: 10.1021/ja00244a022.

    Article  CAS  Google Scholar 

  • Gao, X., & Xu, J. (2006). The oxygen activated by the active vanadium species for the selective oxidation of benzene to phenol. Catalysis Letters, 111, 203–205. DOI:10.1007/s10562-006-0148-1.

    Article  CAS  Google Scholar 

  • Groves, J. T., Bonchio, M., Carofiglio, T., & Shalyaev, K. (1996). Rapid catalytic oxygenation of hydrocarbons by ruthenium pentafluorophenylporphyrin complexes: Evidence for the involvement of a Ru(III) intermediate. Journal of the American Chemical Society, 118, 8961–8962. DOI:10.1021/ja9542092.

    Article  CAS  Google Scholar 

  • Hagen, C. M., Vieille-Petit, L., Laurenczy, G., Süss-Fink, G., & Finke, R. G. (2005). Supramolecular triruthenium clusterbased benzene hydrogenation catalysis: Fact or fiction? Organometallics, 24, 1819–1831. DOI: 10.1021/om048976y.

    Article  CAS  Google Scholar 

  • Henry, M. (2002). Quantitative modelization of hydrogenbonding in polyoxometalate chemisty. Journal of Cluster Science, 13, 437–458. DOI:10.1023/a:1020559217894.

    Article  CAS  Google Scholar 

  • Jovanovic, S. V., Kónya, K., & Scaiano, J. C. (1995). Redox reactions of 3,5-di-tert-butyl-1,2-benzoquinone. Implications for reversal of paper yellowing. Canadian Journal of Chemistry, 73, 1803–1810. DOI: 10.1139/v95-222.

    CAS  Google Scholar 

  • Koval, I. A., Gamez, P., Belle, C., Selmeczi, K., & Reedijk, J. (2006). Synthetic models of the active site of catechol oxidase: mechanistic studies. Chemical Society Reviews, 35, 814–840. DOI: 10.1039/b516250p.

    Article  CAS  Google Scholar 

  • Lin, G., Reid, G., & Bugg, T. D. H. (2001). Extradiol oxidative cleavage of catechols by ferrous and ferric complexes of 1,4,7-triazacyclononane: Insight into the mechanism of the extradiol catechol dioxygenases. Journal of the American Chemical Society, 123, 5030–5039. DOI: 10.1021/ja004280u.

    Article  CAS  Google Scholar 

  • May, Z., Simándi, L. I., & Németh, Z. (2006). A novel ironenhanced pathway for base-catalyzed catechol oxidation by dioxygen. Reaction Kinetics and Catalysis Letters, 89, 349–358. DOI: 10.1007/s11144-006-0147-7.

    Article  CAS  Google Scholar 

  • Morris, A. M., Pierpont, C. G., & Finke, R. G. (2009). Dioxygenase catalysis by d0 metal-catacholate complexes containing vanadium and molybdenum with H2(3,5-DTBC) and H2(3,6-DTBC) substrates. Journal of Molecular Catalysis A: Chemical, 309, 137–145. DOI:10.1016/j.molcata.2009.05.008.

    Article  CAS  Google Scholar 

  • Ragsdale, S. W., & Kumar, M. (1996). Nickel-containing carbon monoxide dehydrogenase/acetyl-CoA synthase. Chemical Reviews, 96, 2515–2540. DOI: 10.1021/cr950058+.

    Article  CAS  Google Scholar 

  • Sigel, R. K. O., & Pyle, A. M. (2007). Alternative roles for metal ions in enzyme catalysis and the implications for ribozyme chemistry. Chemical Reviews, 107, 97–113. DOI:10.1021/cr0502605.

    Article  CAS  Google Scholar 

  • Szigyártó, I. C., Simándi, L. I., Párkányi, L., Korecz, L., & Schlosser, G. (2006). Biomimetic oxidation of 3,5-di-tertbutylcatechol by dioxygen via Mn-enhanced base catalysis. Inorganic Chemistry, 45, 7480–7487. DOI: 10.1021/ic060618v.

    Article  Google Scholar 

  • Weiner, H., & Finke, R. G. (1999). An all-inorganic, polyoxometalate-based catechol dioxygenase that exhibits >100000 catalytic turnovers. Journal of the American Chemical Society, 121, 9831–9842. DOI: 10.1021/ja991503b.

    Article  CAS  Google Scholar 

  • Yin, C. X., & Finke, R. G. (2005). Vanadium-based, extended catalytic lifetime catechol dioxygenases: Evidence for a common catalyst. Journal of the American Chemical Society, 127, 9003–9013. DOI: 10.1021/ja051594e.

    Article  CAS  Google Scholar 

  • Yin, C. X., Sasaki, Y., & Finke, R. G. (2005). Autoxidation-product-initiated dioxygenases: vanadium-based, record catalytic lifetime catechol dioxygenase catalysis. Inorganic Chemistry, 44, 8521–8530. DOI: 10.1021/ic050717t.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Feng Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, XF., Wu, L. Oxidation of 3,5-di-tert-butylcatechol in the presence of V-polyoxometalate. Chem. Pap. 66, 211–215 (2012). https://doi.org/10.2478/s11696-011-0119-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-011-0119-x

Keywords

Navigation